
An Introduction to Hammer: Helicity Amplitude Module for

Matrix Element Reweighting
ver. 1.4.1

Stephan Duell,1 Florian U. Bernlochner,1 Zoltan

Ligeti,2 Michele Papucci,3 and Dean J. Robinson2

1Physikalisches Institut der Rheinischen

Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
2Ernest Orlando Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA 94720, USA
3Burke Institute for Theoretical Physics,

California Institute of Technology, Pasadena, CA 91125, USA

Abstract
The manual...

1

CONTENTS

I. Introduction 3

II. Design Overview 5

A. Reweighting 5

B. New Physics generalization 6

C. Hadronic generalization 7

D. Rates 8

E. Primary code functionalities 8

F. Code flow 9

III. The Hammer Forge 11

A. From the process tree to an amplitude tensor 11

B. Available amplitudes and form factor parametrizations 14

C. Including and excluding processes 15

D. Form factor schemes 17

E. Form factor settings 19

F. Form factor duplication 19

G. Units 19

H. Processing events 20

I. Retrieving event weights 21

J. Setting Wilson Coefficients 21

K. Setting FF eigenvectors 22

L. Specialization of Wilson Coefficients 23

M. Histograms 24

1. Adding 24

2. Filling 25

3. Compression 25

4. Retrieval 26

5. Specialization 26

6. Uncertainties 27

7. Projection 27

N. Pure phase space vertices 27

O. PHOTOS 29

P. Rates 30

Q. Multithreading 31

IV. The Hammer Buffer 31

A. Saving 32

1. Headers, Events and Rates 32

2

2. Histograms 32

3. ROOT 33

B. (Re)loading 33

C. Parallelization and merging 35

V. Conventions 35

A. Vcb 35

B. NP operator basis 36

C. Lorentz signs 37

D. Form Factors and Maps 37

1. B → D 37

2. B → D∗ 38

3. B → D∗∗ 38

4. Λb → Λc 40

5. B → ρ, ω 40

6. Λb → Λ∗c(2595) and Λ∗c(2625) 41

E. Form Factor uncertainties 42

F. D∗∗ strong decays 42

G. Resonance Lineshapes 43

H. τ spinors 44

I. D(∗,∗∗) polarizations, Λ
(∗)
c spins 44

VI. Installation 44

References 46

I. INTRODUCTION

Precision analyses of semileptonic b-hadron decays typically rely on detailed numerical

Monte Carlo (MC) simulations of detector responses and acceptances. Combined with the

underlying theoretical models, these simulations provide MC templates that may be used

in fits, to translate experimental yields into theoretically well-defined parameters. This

translation though can become sensitive to the template and its underlying theoretical model,

introducing biases whenever there is a mismatch between the theoretical assumptions used

to measure a parameter and subsequent theoretical interpretations of the data.

Such biases are known to arise in the analyses of semileptonic decays of b hadrons, in

particular, for the measurements of the CKM element |Vcb|, and the ratio of semitauonic vs.

semileptonic decays to light leptons,

R(Hc) =
Γ(Hb → Hcτ ν̄)

Γ(Hb → Hclν̄)
, l = µ, e , (1)

3

where Hb,c denote b- and c-flavor hadrons. To avoid this, the size of these biases need

to be either carefully controlled when experiments quote their results by reversing detector

effects, or they can be avoided by using dedicated MC samples for each theoretical model the

measurement is confronted with. This manual presents a detailed overview of the capabilities

and application programming interface of Hammer (Helicity Amplitude Module for Matrix

Element Reweighting), designed expressly for the latter purpose.

Semitauonic b hadron decays have long been known to be sensitive to new physics [1–7],

and were first constrained at LEP [8]. At present, the measurements of the R(D(∗)) ratios

show about a 3σ tension with SM predictions, when the D and D∗ modes are combined [9].

In the future, much more precise measurements of semitauonic decays are expected, not only

for the B → D(∗)τ ν̄ channels, but also for the not yet studied decay modes, Λb → Λcτ ν̄,

Bs → D
(∗)
s τ ν̄, as well as involving excited charm hadrons in the final state.

All existing measurements of R(D(∗)) rely heavily on large MC simulations to optimize

selections, provide fit templates in discriminating kinematic observables, and to model res-

olution effects and acceptances. Both the τ and the charm hadrons have short lifetimes

and decay near the interaction point and measurements rely on reconstruction of the en-

suing decay cascades. To reconstruct the decay products, often complex phase space cuts

and detector efficiency dependencies come into play, and the measurement of the full decay

kinematics is impossible due to the presence of multiple neutrinos. In addition, depending

on the final state, a significant downfeed with similar experimental signatures from misre-

constructed excited charm hadron states can be present. Isolation of semitauonic decays

from other background processes and the light-lepton final states, then requires precise pre-

dictions for the kinematics of the signal semitauonic decay. (Further complications arise

from interference among the different spin states of the τ and among those of the charm

hadron. Such effects have sometimes been neglected, treating the τ and charm hadron as

stable particles, when simulations are corrected to account for more up-to-date hadronic

models.) Often the limited size of the available simulated samples, required to account for

all these effects, constitutes a dominant uncertainty of the measurements, see e.g. [10–12].

In the literature on the R(D(∗)) anomaly, it has become standard practice to reinterpret

the experimental values of R(D(∗)) in terms of NP Wilson coefficients, even though all

current ratio measurements were determined assuming the SM nature of semitauonic decays.

However, NP couplings generically alter decay distributions and acceptances. Therefore,

they modify the signal and possibly background MC templates used in the extraction, and

thus affect the measured values of R(D(∗)). This may introduce biases in NP interpretations:

preferred regions and best-fit points for the Wilson coefficients can be incorrect.

Consistent interpretations of the data with NP incorporated requires dedicated MC sam-

ples, ideally for each NP coupling value considered, which would permit directly fitting for

the NP Wilson coefficients. This approach is sometimes referred to as ‘forward-folding’, and

is naively a computationally prohibitively expensive endeavour. Such a program is further

complicated because none of the MC generators current used by the experiments incorpo-

4

rate generic NP effects, nor do they include state-of-the-art treatments of hadronic matrix

elements.

The Hammer software library, that provides a solution to these problems: A fast and effi-

cient means to reweight large MC samples to any desired NP, or to any description of the

hadronic matrix elements. Hammer makes use of efficient amplitude-level and tensorial calcula-

tion strategies, and is designed to interface with existing experimental analysis frameworks,

providing detailed control over which NP or hadronic descriptions should be considered.

The desired reweighting can be implemented either in the event weights or in histograms

of experimentally reconstructed quantities. The only required MC input are the event-level

truth-four-momenta of existing MC samples. Either the event weights and/or histogram

predictions may be used, e.g., to generate likelihood functions for experimental fits. While

Hammer has been designed primarily with b → cτν processes in mind – including not only

B → D(∗,∗∗)`ν, but also e.g. Λb → Λc`ν or Bc → J/ψ `ν – the general framework has been

designed to be extendable to processes such as c→ s`ν or b→ s`` among others.

II. DESIGN OVERVIEW

A. Reweighting

We consider an MC event sample, comprising a set of events indexed by I, with weights

wI and truth-level kinematics {q}I . Reweighting this sample from an ‘old’ to a ‘new’ theory

requires the truth-level computation of the ratio of the differential rates

rI =
dΓnew

I /dPS
dΓold

I /dPS , (2)

applied event-by-event via the mapping wI 7→ rIwI . The ‘old’ or ‘input’ or ‘denominator’

theory is typically the SM plus (where relevant) a hadronic model — that is, a form factor

(FF) parametrization. (It may also be composed of pure phase space (PS) elements.) The

‘new’ or ‘output’ or ‘numerator’ theory may involve NP beyond the Standard Model, or a

different hadronic model, or both.

Historically, the primary focus of the library is reweighting of b → c`ν semileptonic

processes, often in multistep cascades such as B → D(∗,∗∗)(→ DY) τ(→ Xν)ν̄. However,

the library’s computational structure is designed to be generalized beyond these processes,

and we therefore frame the following discussion in general terms, before returning to the

specific case of semileptonic decays.

5

B. New Physics generalization

The Hammer library is designed for the reweighting of processes under theories of the form

L =
∑
α

cαOα . (3)

where Oα are a basis of operators, and cα, are SM or NP Wilson coefficients (defined at a

fixed physical scale; mixing of the Wilson coefficients under RG evolution, if relevant, must

be accounted for externally to the library). We specify in Table VI and the manual the

conventions used for various b → c`ν four-Fermi operators and other processes included in

the library.

The corresponding process amplitudes may be expressed as linear combinations cαAα.

They may also be further expressed as a linear sum with respect to a basis of form factors,

Fi, that encode the physics of hadronic transitions (if any).1 In general, then, an amplitude

may be written in the form

M{s}({q}) =
∑
α,i

cα Fi
(
{q}
)
A{s}αi

(
{q}
)
, (6)

in which {s} are a set of external quantum numbers and {q} the set of four-momenta.2

The object Aαi is an NP- and FF-generalized amplitude tensor. In the case of cascades,

relevant for B → D(∗,∗∗)(→ DY) τ(→ Xν)ν̄ decays, the amplitude tensor may itself be the

product of several subamplitudes, summed over several sets of internal quantum numbers.

The corresponding polarized differential rate

dΓ{s}

dPS =
∑
α,i,β,j

cαc
†
β FiF

†
j

(
{q}
)
A{s}αi A†{s}βj

(
{q}
)
,

=
∑
α,i,β,j

cαc
†
β FiF

†
j

(
{q}
)
Wαiβj , (7)

in which the phase space differential form dPS includes on-shell δ-functions and geometric

or combinatoric factors, as appropriate.

1 In all b→ c processes currently handled by Hammer– see Table III for a list – the form factors are functions

of

q2 =
(
pHb
− pHc

)2
, (4)

or equivalently functions of the dimensionless kinematic variable,

w = v · v′ =
m2

Hb
+m2

Hc
− q2

2mHb
mHc

, (5)

with four velocities v = pHb
/mHb

and v′ = pHc/mHc . For decays with multi-hadron final states, such as

the τ → nπ, n ≥ 3, the form factors are also dependent on multiple invariant masses of the final state

hadrons. Thus b→ cτν processes with subsequent hadronic τ decays involve at least two separate sets of

hadronic functions at the amplitude level.
2 The momenta of an event passed to the library must all be specified in the same frame. The choice of

frame is arbitrary.

6

The outer product of the amplitude tensor, defined asW ≡ AA†, is a weight tensor. The

object
∑

ij FiF
†
jWαiβj in Eq. (7) is independent of the Wilson coefficients: Once this object

is computed for a specific {q} – an event – it can be contracted with any choice of NP to

generate an event weight. Similarly, on a patch of phase space Ω — e.g., the acceptance of

a detector or a bin of a histogram — the marginal rate can now be written as

Γ
{s}
Ω =

∑
α,β

cαc
†
β

∫
Ω

dPS
∑
ij

FiF
†
j

(
{q}
)
W{s}αiβj

(
{q}
)
. (8)

The Wilson coefficients factor out of the phase space integral, so that the integral itself

generates a NP-generalized tensor. After it is computed once, it can be contracted with any

choice of NP Wilson coefficients, cα, thereafter.

The core of Hammer’s computational philosophy is based on the observation that this

contraction is computationally much more efficient than the initial computation (and inte-

gration). Hence efficient reweighting is achieved by

• Computing NP (and/or FF, see below) generalized objects, and storing them;

• Contracting them thereafter for any given NP (and/or FF) choice to quickly generate

a desired NP (and/or FF) weight.

C. Hadronic generalization

Similarly to the NP Wilson coefficients, it is often desirable to be able to generalize

variation in the FF parameterization itself. For instance, one might contemplate variations

along the error eigenbasis of a fit to the FF parameters, or FF parametrizations that are

linearized with respect to a basis of parameters, such as the BGL FF parametrization [13–

15] in B → D(∗)`ν. To this end, an FF parametrization with a parameter set {µ} can be

linearized around a (best-fit) point, {µ0} so that

Fi
(
{q}; {µ}

)
= Fi

(
{q}, {µ0}

)
+
∑
a

F ′i,a
(
{q}, {µ0}

)
ea , (9)

where ‘a’ is one or more variational indices and ea is the variation. In the language of the

error eigenbasis case, F ′i,a is the perturbation of Fi in the ath principal component ea of the

parametric fit covariance matrix.

Defining ξa ≡ (1, ea) and Φi,a+1 ≡ (Fi, F
′
i,a), so that Eq. (9) becomes∑

a

ξaΦi,a = Fi +
∑
a′

F ′i,a′ ea′ (10)

then the differential rate

dΓ{s}

dPS =
∑
α,a,β,b

cαc
†
βξaξ

†
bU
{s}
αaβb , U{s}αaβb ≡

∑
ij

Φi,aΦ
†
j,b

(
{q}
)
W{s}αiβj

(
{q}
)
, (11)

7

with U an NP- and FF-generalized weight tensor. The ξa are independent of {q} and factor

out of any phase space integral just as the Wilson coefficients do. That is, an integral on

any phase space patch,

Γ
{s}
Ω =

∑
α,β,a,b

cαc
†
βξaξ

†
b

∫
Ω

dPS U{s}αaβb . (12)

One may thus tensorialize the amplitude with respect to Wilson coefficients and/or FF

linearized variations, to be contracted later with with NP or FF variation choices (the latter

within the regime of validity of the FF linearization). Hereafter, the ξa are referred to as

‘FF uncertainties’ or ‘FF eigenvectors’ following the nominal fit covariance matrix example.

D. Rates

In certain use cases, it is also useful to compute and fold in an overall ratio of rates

Γold/Γnew, or the rates themselves, Γnew,old, may be required. For example, if the MC sample

has been initially generated with a fixed overall branching ratio, Bnew, one might wish to

enforce this constraint via an additional multiplicative factor Bold/Bnew.

The different components computed by Hammer are then:

(i) The NP- and/or FF-generalized tensor for (dΓnew
I /dPS)/(dΓold

I /dPS), via Eq. (11),

noting that the denominator carries no free NP or FF variational index. (The ratio rI
is then itself generally at least a rank-2 tensor.);

(ii) The NP- and/or FF-generalized rate tensors Γold, new, which need be computed only

once for an entire sample. (These rates require integration over the phase space, which

is achieved by a dedicated multidimensional Gaussian quadrature integrator.)

E. Primary code functionalities

The calculational core of Hammer computes the NP or FF generalized tensors event-by-event

for any process known to the library (see Tab. III for a list), and as specified by initialization

choices (more detail is provided in Sec. II F) and specified form factor parametrizations.

This core is supplemented by a wide array of functionalities to permit manipulation the

resulting NP- and FF-generalized weight tensors as needed. This may include binning —

equivalent to integrating on a phase space patch — the weight tensors into a histogram of

any desired reconstructed observables, and/or it may include folding of detector simulation

smearings, etc. Such histograms have NP- and FF-generalized tensors as bin entries, and

we therefore call them generalized or tensor histograms. Once such NP- and FF-generalized

tensor objects are computed and stored, contraction with NP or FF eigenvector choices

permits the library to efficiently generate actual event weights or histogram bin weights for

any theory of interest.

8

The architecture of Hammer is designed around several primary functionalities:

(i) Provide an interface to determine which processes are to be reweighed, and which

(possibly multiple) schemes for form factor parametrizations are to be used. This

includes handling for (sub)processes that were generated as pure phase space.

(ii) Parse events into cascades of amplitudes known to the library, and compute their

corresponding NP- and/or FF-generalized amplitude or weight tensor, as well as the

respective rate tensors, as needed.

(iii) Provide an interface to generate histograms (of arbitrary dimension), and bin the event

weight tensors — i.e., rIwI , as in Eq. (2) — into these histograms, as instructed. This

includes functionality for weight-squared statistical errors, functionality for generation

of ROOT histograms, as well as extensive internal architecture for efficient memory

usage.

(iv) Efficiently contract generalized weight tensors or bin entries against specific FF vari-

ational or NP choices, to generate an event or bin weight. This includes extensive

internal architecture to balance speed versus memory requirements.

(v) Provide interface to save and reload amplitude or weight tensors or generalized his-

tograms, to permit quick reprocessing into weights from precomputed or ‘initialized’

tensor objects.

Examples of the implementation of these functionalities is shown in extensive examples

provided with the source code.

F. Code flow

A Hammer program may have two different types of structure: An initialization program,

so called as it runs on MC as input, and may generate Hammer format files; or a analysis

program, which may reprocess histograms or event weights that have already been saved in

an initialization run.

An initialization program has the generic flow:

(i) Create a Hammer object.

(ii) Declare included or forbidden processes, via includeDecay and forbidDecay.

(iii) Declare form factor schemes, via addFFScheme and setFFInputScheme.

(iv) (Optional) Add histograms, via addHistogram.

(v) (Optional) Declare the MC units, via setUnits.

9

(vi) Initialize the Hammer class members with initRun.

(vii) (Optional) Change FF default settings with setOptions, or (if not SM) declare the

Wilson coefficients for the input MC via setWilsonCoefficients.

(viii) (Optional) Fix Wilson coefficient (Wilson coefficient and/or FF uncertainty) choice to

special choices in weight calculations (histogram binnings), via specializeWCInWeights

(specializeWCInHistogram and/or specializeFInHistogram).

(ix) Each event may contain multiple processes, e.g., a signal and tag B decay. Looping

over the events:

(a) Initialize event with initEvent. For each process in the event:

i. Create a Hammer Process object.

ii. Add particles and decay vertices to create a process tree, via addParticle and

addVertex.

iii. Decide whether to include or exclude processes from an event via addProcess

and/or removeProcess.

(b) Compute or obtain event observables – specific particles can be extracted with

getParticlesByVertex or other programmatic means – and specify the correspond-

ing histogram bins to be filled via fillEventHistogram.

(c) Initialize and compute the process amplitudes and weight tensors for included

processes in the event, and fill histograms with event tensor weights – the direct

product of include process tensor weights – via processEvent.

(d) (Optional) Save the weight tensors for each event, with saveEventWeights to a

buffer.

(e) (Optional) Save the rate tensors, with saveRates to a buffer.

(x) (Optional) Generate histograms with getHistogram(s) and/or save them with saveHistograms.

NP choices are implemented with setWilsonCoefficients, FF variations are set with

setFFEigenvectors.

(xi) (Optional) Save an autogenerated bibTeX list of references used in the run with

saveReferences.

By contrast, an analysis program (from a previously initialized sample, stored in a buffer)

has the generic flow:

(i) Create a Hammer object and specify the input file.

10

(ii) Load or merge the run header — include or forbid specifications, FF schemes, or

histograms — with loadRunHeader (before initRun). One may further declare addi-

tional histograms to be compiled (from saved event weight data) via addHistogram

(loadRunHeader must be called before initRun to ensure newly-added histograms can

access previously saved form factor schemes).

(iii) (Optional) Load or merge saved histograms with loadHistograms, and/or gener-

ate desired histograms with getHistogram(s). NP choices are implemented with

setWilsonCoefficients.

(iv) (Optional) Looping over the events:

(a) Initialize event with initEvent.

(b) If desired, remove processes from an event with removeProcess.

(c) Reload event weights with loadEventWeights.

(d) Specify histograms to be filled via fillEventHistogram.

(e) Fill histograms with event weights via processEvent.

III. THE HAMMER FORGE

In the following we describe various core parts of the Hammer Application Programming

Interface (API). This includes a detailed explanation of information handling and rules en-

forced by the computational core in following user specifications, assembling amplitudes, or

returning histograms or weights, among other functionalities. The library itself is imple-

mented in C++, along with a Python3 wrapper of the API, that uses idenitical syntax.

We will consider here the C++ interface only; the discussion is ordered by scope, rather

than the typical code flow. The library provides four core classes in its user interface:

the Hammer class itself; the Process and Particle classes, used to create events; and the

IOBuffer class used for saving and loading precomputed objects. Internal computational

classes include Amplitude, FormFactor and Rate classes, that encode the physics of processes

known to the library. A schematic of the architecture of Hammer is shown in Fig. 1.

A. From the process tree to an amplitude tensor

A typical decay cascade is contained in the library by the Process class; an event may

contain multiple Process instances as e.g., is the case for a signal plus tag B-B̄ pair. Each

cascade may be simply represented in graphical terms as a ‘process tree’, as shown in Fig. 2:

Each decay vertex is labelled by its local parent particle, connected to subsequent daughter

decays by an edge (i.e. a line, or formally, a propagator). Each particle in the cascade is

11

Hammer

class

Process/Particle
class

Amplitude classes
FormFactor

classes
Rate

classes

IOBuffer class

b→
c`ν

A
m

p
l

#
1

τ
A

m
p
l

#
1

b→
c`ν

A
m

pl
#

2

τ
A
m

pl #
2

b→
c`ν Ampl #3

τ Ampl #3

b
→

c
F

F
#

1

b
→
c

F
F

#
2

b →
c FF #3

b →
c Rate #1

b → c Rate #2

b →
c Rate #3

Option settings

Process and FF
specifications etc

Event MC data

Weight tensor

Tensorial
histogram

FIG. 1. Schematic architecture of Hammer. The flow of user specified choices or event data is shown

by yellow arrows. Blue (green) arrows denote the flow of calculational information, in particular

amplitude, weight or rate (form factor) tensors. Red arrows highlight the flow of Hammer output,

which may be saved or reloaded. Most internal Hammer classes are not shown in this schematic.

itself assigned an index, and then decay vertex is represented as a map from a parent index,

to the indices of all its daughters.

Hammer assembles the process tree through two methods Process::addParticle and Process::

addVertex. The former adds a Particle class object – a momentum and a PDG code – to a

container of particles; the latter fills a map of each parent to its daughters for each decay

vertex. In the case of Fig. 2, the first two vertices of the cascade may be built explicitly as

follows:

Process proc;

size_t idx0 = proc.addParticle(Particle{{E_0, px_0, py_0, pz_0}, pdg_0});

size_t idx1 = proc.addParticle(Particle{{E_1, px_1, py_1, pz_1}, pdg_1});

size_t idx2 = proc.addParticle(Particle{{E_2, px_2, py_2, pz_2}, pdg_2});

size_t idx3 = proc.addParticle(Particle{{E_3, px_3, py_3, pz_3}, pdg_3});

size_t idx7 = proc.addParticle(Particle{{E_7, px_7, py_7, pz_7}, pdg_7});

size_t idx8 = proc.addParticle(Particle{{E_8, px_8, py_8, pz_8}, pdg_8});

12

0

1

4

5

910

6

2

7

8

3

FIG. 2. Example process tree for a decay cascade involving 10 particles (numbers), 4 vertices

(circles) and 3 edges (dark lines).

proc.addVertex(idx0, {idx1,idx2,idx3});

proc.addVertex(idx2, {idx7,idx8});

and so on. Particles and vertices need not be added in order; helper functions are provided

in the code examples for automatically parsing HepMC files.

From the filled process tree, Hammer determines several hashes or sets of hashes, that encode

the structure of the tree: In particular, i) a set of the hashes of parent and daughter particle

PDG codes at each vertex; ii) a combined hash for the process – a ‘process ID’ – providing

a 1-1 identifier between the full decay cascade and a size_t integer. For any process, the

latter can be obtained by the method Process::getId. The former will be relevant later for

understanding how ‘included’ and ‘forbidden’ processes are identified.

At this stage, the natural computational step is to map each vertex into a corresponding

amplitude tensor, contracting exchanged quantum numbers along each edge to form a single

tensor for the whole process tree. In the simplest cases, this is precisely the strategy adopted

by Hammer, i.e. the particle ID hashes constructed at each vertex are looked up in a dictionary

of the signatures of available Amplitude classes. A similar technique, using the hash of

the hadronic particles in a vertex, is used to identify whether form factors are needed at

each vertex. (If form factors are required at a vertex, Hammer will obtain the relevant form

factor parameterization as specified by the user for the hadronic transition in question.)

If no amplitude is found for a vertex, hammer will simply skip this step of the cascade.

This behavior means that hammer implicitly prunes potentially highly extended cascades,

providing an amplitude tensor only for vertices Hammer ‘knows’ (i.e. the parts of the cascade

we care about for understanding NP effects or FF parametrizations).

In certain cases the strategy adopted for determining the process amplitude is more

sophisticated than a vertex-by-vertex approach. For certain decays, it can be computation-

ally advantageous to calculate an amplitude for two adjacent amplitudes. For example, in

13

B → (D∗ → Dγ)`ν, simpler expressions can be obtained if one calculates the entire ‘merged’

amplitude, treating the D∗ as an onshell internal state, rather than two separate amplitudes

exchanging D∗ spin. Similarly, for τ → (ρ → ππ)ν, treatment of non-resonant effects from

the broad ρ motivate expressing this amplitude as one merged amplitude, even though in the

process tree it would be represented as two vertices. Multistep decays involving the broad

D∗∗ may also be more tractable when merged in this manner. Thus in additional to vertex

amplitudes, Hammer is also capable of processing ‘edge’ amplitudes, that is, one amplitude

belonging to two adjacent vertices connected by an edge in the process tree. It can therefore

happen that although Hammer does not know the amplitude for a particular vertex, it does

know an edge amplitude involving that vertex and another.

To explain what this means in practice for the user, it’s useful to introduce a vertex

and edge notation for the process tree. If Hammer knows the amplitude at a vertex, the

vertex is denoted by a filled circle, and if unknown, by an open circle. If an edge vertex

is available for two vertices, we connect them by a double line. This leads to five different

types of amplitude combinations, defined in Table I. The arithmetic followed by Hammer in

determining the amplitude from tree is as follows:

(i) Fill all available pure edges by lowest (i.e., furthest from head parent) to highest depth

in the process tree, being sure not to assign the same vertex twice

(ii) Repeat for partial then full edges

(iii) Assign known vertex amplitudes to any remaining free vertices.

Two examples or this arithmetic are shown in Table II.

Vertex Edge

Amplitude Known Unknown Pure Partial Full

Notation

TABLE I. Definition of vertex and edge amplitude types.

B. Available amplitudes and form factor parametrizations

The list of vertex and edge amplitudes known to Hammer are shown in Table III. Also shown

are correspondingly available form factor parametrizations, as appropriate. See the option

card (OptDefaults.pdf) for a full list of the settable form factor parameters and switches, and

their default values.

14

Known Amplitudes Evaluated Amplitudes

0

1

5

2 0 1 , 2 , 5

0

1

5

2 0 , 1 5 , 2

TABLE II. Example arithmetic for filling amplitudes for the process tree of Fig. 2, assuming

different example sets of known amplitudes in Hammer.

C. Including and excluding processes

The Hammer library contains an interpreter between a string representation of a vertex

and the corresponding PDG codes of incoming and outgoing particles. At present, a string

representation of a vertex, or ‘vertex string’ is formed by concatenating a single parent

name with daughter names, in the form ParentDaughter1Daughter2.... The interpreter uses

the syntax that particle names are parsed by a capital letter: the full list of names is provided

in Table IV. The interpreter maps a vertex string to all possible charge conserving processes

allowed by the charges of the specified particle names. For example the vertex string "D*DPi"

is interpreted as all twelve possible D∗ → Dπ vertices, while "D*+DPi" is interpreted as only

the D∗+ → D+π0, D∗+ → D0π+, and (the heavily CKM suppressed) D∗+ → D̄0π+ decays,

and finally the vertex string "D*+D0Pi" corresponds to the unique decay D∗+ → D0π+.

The decay processes to be reweighed by Hammer are specified via Hammer::includeDecay,

which takes a vector of vertex strings {V1, V2, . . . , Vn} as an argument, and may be in-

voked multiple times. Each includeDecay specification is inclusive and permits any pro-

cess tree whose set of vertices P contains {V1, V2, . . . , Vn}. The boolean logic applied by

includeDecay is AND between each vertex string element, and OR between separate invocations

of includeDecay. For example

ham.includeDecay({"BD*TauNu", "D*DGamma"});

ham.includeDecay({"BDMuNu"});

means ‘Reweigh a process that either contains vertices (B → D∗τν and D∗ → Dγ) or the

vertex (B → Dµν)’. Hence e.g. B̄0 → (D∗+ → (D+ → K+π+π−)γ)(τ− → `−νν) would be

included. Radiative photons are automatically accounted for, and need not be specified in

includeDecay specifications (see Sec. III O).

15

Process FF parametrizations

B → D(∗)`ν ISGW2∗ [16, 17], BGL∗‡ [13–15], CLN∗‡ [18],

BLPR‡ [19], BLPRXP‡ [20]

B → (D∗ → Dπ)`ν ISGW2∗, BGL∗‡, CLN∗‡, BLPR‡, BLPRXP‡

B → (D∗ → Dγ)`ν ISGW2∗, BGL∗‡, CLN∗‡, BLPR‡, BLPRXP‡

B → D∗0`ν ISGW2∗, LLSW∗ [21, 22], BLR‡ [23, 24]

B → D∗1`ν ISGW2∗, LLSW∗, BLR‡

B → D1`ν ISGW2∗, LLSW∗, BLR‡

B → D∗2`ν ISGW2∗, LLSW∗, BLR‡

B → (ρ→ ππ)`ν ISGW2∗, BSZ‡ [25]

B → (ω → πππ)`ν ISGW2∗, BSZ‡

Λb → Λc`ν PCR∗ [26], BLRS‡ [27, 28], BLRSXP [29]‡

Λb → Λ∗c`ν PCR∗, LSPR‡[30, 31]

Bc → (J/ψ → ``)`ν Kiselev∗ [32], EFG∗ [33], BGL∗‡ [34], . . .

B → π`ν ISGW2∗, BCL∗‡ [35], GKvD [36]

Bs → K`ν ISGW2∗, BCL∗‡[37]

τ → πν —

τ → `νν —

τ → 3πν RCT∗ [38–40]

D1 → (D∗ → Dπ/γ)π PW

D∗2 → (D∗ → Dπ/γ)π PW

D∗2 → Dπ PW

Planned for future release

B(c) → `ν MSbar

τ → 4πν RCT∗

τ → (ρ→ ππ)ν —

TABLE III. Implemented amplitudes in Hammer and corresponding form factor parametrizations.

SM-only parametrizations are indicated by a ∗ superscript. Form factor paramterizations that

include linearized variations are denoted with a ‡ superscript. These are named in the library by

adding a “Var” suffix, e.g. “BGLVar”. For each b→ c process, also included are analogous bs→ cs

processes with the same set of form factor parameterizations. Similarly, charmed meson cascades

to D and π’s include charm-strange equivalent processes to final states containing Ds or K.

Processes are forbidden with the Hammer::forbidDecay method, which similarly takes

a vector of vertex strings {V1, V2, . . . , Vn}, and employs the same boolean structure as

includeDecay. However, forbidDecay specifications are exclusive and forbids only process

trees whose set of vertices P equals {V1, V2, . . . , Vn}. For example

ham.forbidDecay({"B+D0barMuNu"});

16

means ‘Exclude a process that contains only the vertex B+ → D̄0µ+νµ’, but e.g. this would

not exclude a process involving a subsequent D decay.

Inclusion or exclusion of processes may also be specified via an initialization card in YAML

format. For example, the equivalent to the above includeDecay and forbidDecay invocations

is

Include: [[BD*TauNu, D*Dpi], BDMuNu]

Forbid: [B+D0barMuNu]

using the same vertex string syntax and symbology.

D. Form factor schemes

In general, histogramming of event weights does not commute with contraction of FF

parametrization and weight tensors (unless one of the histogram dimensions is explicitly q2).

The Hammer library therefore allows the user to specify form factor ‘schemes’ to be used in

reweighting. A form factor scheme is a set of FF parameterization choices for each hadronic

transition involving form factors, and is labelled by a ‘scheme name’. These schemes are set

by the method Hammer::addFFScheme, which takes a scheme name plus a map from hadronic

string representation to FF parametrization. The hadronic string follows the same syntax

and uses the same particle symbols as for vertex strings in Sec. III C. For example,

ham.addFFScheme("Scheme1", {{"BD", "BLPR"}, {"BD*", "BLPR"}});

ham.addFFScheme("Scheme2", {{"BD", "BGL"}, {"BD*", "CLN"}});

declares two different FF schemes, choosing BLPR for both B → D and B → D∗ form

factors in "Scheme1", and a mixture of schemes for "Scheme2". Separate histograms and

event weights are generated for each scheme name, which are retrieved with the methods

Hammer::getHistogram(s) and Hammer::getWeight(s), as described below. The list of symbols

for available FF parametrizations are provided in Table III. The hadronic strings are charge

sensitive, so different FFs for charged and neutral processes can be set, e.g. via an entry

{"B+D", "BGL"} versus {"B0D", "CLN"}, and so on.

Specification of the form factor schemes used to generate the MC sample, i.e. the denom-

inator or input form factors, must be specified in order for Hammer to be able to generate the

reweighting tensors. These schemes are specified by the method Hammer::setFFInputScheme,

which takes a map from hadronic string representation to FF parametrization scheme. For

example

ham.setFFInputScheme({{"BD", "ISGW2"}, {"BD*", "ISGW2"}});

sets both B → D and B → D∗ denominator form factors to ISGW2, a common MC

parametrization.

17

Symbol Particle(s)

D D+ , D− , D0 , D̄0

D* D∗0 , D∗− , D∗+ , D̄∗0

Lc Λ+
c ,Λ

−
c

B B0 , B− , B+ , B̄0

Bs B0
s , B̄0

s

Lb Λ0
b , Λ̄

0
b

Bc B−c , B+
c

K K+ , K− , K0
L , K

0
S , K

0 , K̄0

Pi π0 , π+ , π−

D**0* D∗00 , D∗−0 , D∗+0 , D̄∗00

D**1* D∗1 , D∗−1 , D∗+1 , D̄∗01

D**1 D0
1 , D−1 , D+

1 , D̄0
1

D**2* D∗02 D∗−2 , D∗+0 , D̄∗00

Lc*2595 Λ∗+c (2595) ,Λ∗−c (2595)

Lc*2625 Λ∗+c (2625) ,Λ∗−c (2625)

Jpsi J/ψ

E e+ , e−

Mu µ− , µ+

Tau τ− , τ+

Nu νe , ν̄e , νµ , ν̄µ , ντ , ν̄τ

Ell µ− , µ+ , e− , e+

W W+ , W−

Gamma γ

Tau+ τ+

E+ e+

Mu+ µ+

K+ K+

K0S K0
S

K0L K0
L

K0 K0

K0bar K̄0

B0 B0

B0bar B̄0

B+ B+

B+- B+ , B−

Babar B0 , B̄0

Bs0 B0
s

Bs0bar B̄0
s

Bc+ B+
c

D0 D0

D+ D+

D0bar D̄0

Symbol Particle(s)

D+- D+ , D−

Dabar D0 , D̄0

D*0 D∗0

D*+ D∗+

D*- D∗−

D*0bar D̄∗0

D*+- D∗+ , D∗−

D*abar D∗0 , D̄∗0

Lc+ Λ+
c

Lc*2595+ Λ∗+c (2595)

Lc*2625+ Λ∗+c (2625)

Lb0 Λ0
b

Lb0bar Λ̄0
b

Pi0 π0

Pi+ π+

Nut ντ

Nutbar ν̄τ

Num νµ

Numbar ν̄µ

Nue νe

Nuebar ν̄e

W+ W+

D**0*0 D∗00

D**0*+ D∗+0

D**0*0bar D̄∗00

D**0*+- D∗+0 , D∗−0
D**0*abar D∗00 , D̄∗00

D**1*0 D∗01

D**1*+ D∗+1

D**1*0bar D̄∗01

D**1*+- D∗+1 , D∗−1
D**1*abar D∗01 , D̄∗01

D**10 D0
1

D**1+ D+
1

D**10bar D̄0
1

D**1+- D+
1 , D−1

D**1abar D0
1 , D̄0

1

D**2*0 D∗02

D**2*+ D∗+2

D**2*0bar D̄∗02

D**2*+- D∗+2 , D∗−2
D**2*abar D∗02 , D̄∗02

TABLE IV. List of currently available particle specifications and corresponding particles. For each

‘...+’ name, there is a corresponding ‘...-’.

As for the include and forbid specifications, the form factor schemes can also be specified

in the initialization card in YAML format. The equivalent to the above settings is

FormFactors:

NumeratorSchemes:

Scheme1: { BD: BLPR, BD*: BLPR }

Scheme2: { BD: BGL, BD*: CLN }

Denominator: { BD: ISGW2, BD*: ISGW2 }

18

E. Form factor settings

FF parametrization default settings are fixed inside the FF classes themselves. Manipu-

lation of the FF default settings may be achieved via setOptions, which takes YAML format

arguments. For instance,

ham.setOptions("BtoDBGL: {ChiTmB2: 0.01, ChiL: 0.002}");

changes the two BGL outer function parameters from their default settings. This can be

done before or after invocation of initRun. Note that the YAML key for the relevant FF

class matches the format of the class prefix, with ‘to’ inserted in the hadronic transition,

producing an "XtoY" form. E.g. BtoDBGL, rather than BDBGL.3

See the option card (OptDefaults.pdf) for a full list of the settable form factor parameters

and switches, and their default values.

F. Form factor duplication

Duplication of the same FF class is permitted in different FF schemes, and is invoked by

adding a token to a FF parametrization name, separated by an underscore. For instance,

one may declare

ham.addFFScheme("Scheme1", {{"BD", "BGL_1"}, ... });

ham.addFFScheme("Scheme2", {{"BD", "BGL_2"}, ... });

ham.setFFInputScheme({{"BD", "BGL_den"}, ... });

In this case, three copies of the B → D BGL class are created, whose settings may be

manipulated (via setOptions) separately. E.g.

ham.setOptions("BtoDBGL_1: {ChiT: 0.01, ChiL: 0.002}");

ham.setOptions("BtoDBGL_2: {ChiT: 0.03, ChiL: 0.007}");

ham.setOptions("BtoDBGL_den: {ChiT: 0.02, ChiL: 0.005}");

G. Units

While the reweights generated by Hammer are dimensionless, various form factor schemes

are defined with respect to dimensionful quantities, requiring the library to know the units

3 This notation is intended to make it clear we are identifying settings for a particular class – the B →
D BGL class – and not a process. It further ensures syntactic distinction between a hadronic string

representation, which can take a charge assignment like "B0D+", and a class prefix for a B → D FF class

like "BtoD", which does not.

19

of the input MC. This is set by the Hammer::setUnits method, which accepts a string of the

name of units convention, from eV to TeV. E.g. ham.setUnits("MeV"), declares the input MC

to be in MeV. This declaration must be made before initRun.

The default units inside the library are GeV: The masses and partial widths in the Pdg

are specified in GeV. These feed into rate computations, which are therefore also handled

internally in GeV. (After events have been processed, setUnits may also be used to specify

the units in which partial widths are returned by getRate. See Sec. III P below.)

H. Processing events

An Event object may contain multiple instances of Process, in order to account for the

fact that a single event may feature e.g. two B decay processes. The Event class is initialized

by Hammer::initEvent(), which may take an optional weight double if the event has a non-

unit initial weight (this can also be set by Hammer::setEventBaseWeight). Process instances are

added by Hammer::addProcess(proc) which also returns the HashId of the process. If the process

is not allowed according to the includeDecay or forbidDecay specifications, the returned HashId

is zero, and the process is not added to the relevant Event containers.

Once a process is added, it is automatically initialized, which chiefly involves: calculating

the signatures of each vertex in the decay cascade; identifying the various subamplitudes

making up the cascade, as well as relevant form factor parametrizations and vertex decay

rates, for both the numerator/output and denominator/input; and calculating the total

rate for the vertex (this is done only once per run per unique vertex and per FF scheme).

The amplitude tensors and form factors are not computed, however, until the invocation of

Hammer::processEvent. Once a process is added, the methods Process::getParticlesByVertex

or getVertexId can be used to extract specific particles in a vertex or other vertex properties,

taking as an argument the relevant vertex string. These methods can be used to construct

desired observables belonging to the process; this can also be done by the user externally to

Hammer, as desired. E.g.

proc.getParticlesByVertex("D*DPi");

returns pair<Particle, vector<Particle>> for the parent D∗ and vector of daughter particles,

D and π. As an additional convenience, a process can be explicitly removed from the event

by Hammer::removeProcess(procId), which takes the relevant process HashId as its argument.

This functionality is mainly relevant if one wishes to use Hammer-supplied getter methods for

extracting process observables, but one does not actually wish to include the process weight

in computations. It can also be used to prevent inclusion of spurious processes in EventIds,

that would otherwise cause the latter to undesirably proliferate in number.

Once all processes are added (and if histograms have been added, relevant ones have been

specified to be filled; see Sec. III M 2), the amplitudes and weights are computed (and weights

are added to histogram bins) by invocation of Hammer::processEvent. If processEvent is invoked

20

on an event with no included (or all removed) processes, Hammer assigns a unit event weight

to the event (times any initial weight specified in initEvent or setEventBaseWeight): Caution

should therefore be employed in invoking processEvent on such events, if this behavior is not

desired.

Internally, processEvent proceeds by two separate steps: Calculating the process ampli-

tudes and weight; and then filling histograms (if any). Either of these steps can be disabled

at anytime by the options settings ham.setOptions("Hammer: {CalcProcesses: false}") and

ham.setOptions("Hammer: {CalcHistograms: false}"), respectively, and similarly re-enabled at

any time. Alternatively, processEvent can accept an optional enum parameter of type

PAction as input. The default behavior of computing both weights and filling histograms

is PAction::ALL, but can be modified to weights-only by passing PAction::WEIGHTS or to

histograms-only with PAction::HISTOGRAMS. In the latter case the weights must have already

been computed in an earlier call. These might be useful when combined with other error

handling inputs.

MC event samples with very large numbers of events but low numerical precision can lead

to rare events with ‘impossible’ kinematics. For example, in an X → Y Z vertex, if Y and Z

have very small angular separation, numerical noise can lead to helicity angle cosines, when

expressed in terms of kinematic invariants, that fluctuate > 1. This can lead to a NaN am-

plitude and event weight. The option ham.setOptions("ProcessCalc: {CheckForNaNs: true}")

allows for explicit checking of NaN at the process amplitude calculational step, throwing

an error that may be caught upstream as desired (e.g. within a conditional on whether

processEvent should fill histograms).

I. Retrieving event weights

Once an event has been processed (or loaded from a file), the weight for a specific event

can be retrieved by Hammer::getWeights("FFScheme"), which returns a map of each process

Id and corresponding double process weight for the specified FF scheme. These weights

can then be combined as appropriate. Alternatively, if HashIds of the desired processes are

known, one may use Hammer::getWeight("FFScheme", procIds), where the second argument is

a vector<HashId>, that returns the corresponding weights already combined into a double.

J. Setting Wilson Coefficients

Crucial to the application of either getWeight(s) method is pre-setting of the relevant

’external data’, i.e. WCs and FF uncertainties (if any). (Settings for FF parameter central

values must be invoked before Hammer::processEvent, as must settings for the denominator/in-

put WCs; see Sec. III H.) The WCs are set by the method Hammer::setWilsonCoefficients.

The default WC settings are the SM. A typical example of the usage of this method is

21

ham.setWilsonCoefficients("BtoCTauNu", {{"S_qLlL", 1.}, {"T_qLlL",0.25}});

where the first argument can be any of "BtoCTauNu", "BtoCTMuNu", or "BtoCENu" as desired.

The second argument is a map<string, complex<double>> of each WC to its desired value.

The full list of WCs and their definitions is supplied in Sec. V B. An optional third ar-

gument is an enum WTerm value, that declares whether the evaluation should be applied

to the numerator and/or denominator (numerator by default). The enum WTerm may take

values {COMMON, NUMERATOR, DENOMINATOR} As an alternative, one may instead pass as second

argument a vector<complex<double>, corresponding to the ordered basis

{"SM", "S_qLlL", "S_qRlL", "V_qLlL", "V_qRlL", "T_qLlL",

"S_qLlR", "S_qRlR", "V_qLlR", "V_qRlR", "T_qRlR"}.

It is important to note that the setWilsonCoefficients method, when taking a map, pro-

duces incremental settings changes. I.e. the sequential invocations

ham.setWilsonCoefficients("BtoCTauNu",

{{"S_qLlL", 1.}, {"T_qLlL",0.25}});

ham.setWilsonCoefficients("BtoCTauNu", {{"S_qLlL", 0.5}});

will result in S_qLlL = 0.5 and T_qLlL = 0.25, since the latter was not affected by the second

call. The method resetWilsonCoefficients takes the WC type – e.g. "BtoCTauNu"– and resets

the corresponding WCs to the default SM.

K. Setting FF eigenvectors

As mentioned in Sec II C, certain form factor classes (typically, those with names ending in

“Var”) incorporate linearized variation of the FF parametrization, with additional variational

indices in the form factor tensors, in the sense defined by eq. (9). This generalizes the tensor

weights into the form factor error eigenspace (or whatever space is defined in the relevant

parametrization’s class), which may then be contracted with the desired error (eigen)vector,

permitting reweighting of the events to any point in this space.

This error (eigen)vector is set via the method Hammer::setFFEigenvectors. The usage is

similar setWilsonCoefficients, except that setFFEigenvectors takes the name of the hadronic

process in "XtoY" form (see Sec. III D), the name of the FF parametrization, and then either

a map<string, complex<double>> of the error coordinates to be changed, or a vector of coor-

dinates vector<complex<double>, with respect to the basis defined by the parametrization’s

class. A typical example of the usage of this method is

ham.setFFEigenvectors("BtoD*", "BGLVar", {{"delta_a1", 0.1},

{"delta_b1",-0.05}});

22

See Sec. V E for examples of definitions and conventions of currently implemented FF varia-

tional classes. Parametrizations with FF uncertainty indices are intended to be used only in

the numerator FF schemes; specific settings for the denominator classes can be implemented

by a duplicated FF scheme and setOptions (see Sec. III D).

The FF classes with linearized variations permit the matrix of eigenvectors of the fit

covariance – the eigenspace matrix, that defines the basis of variations – to be set as an

option through setOptions. (The special choice that this eigenspace matrix is the identity

typically corresponds to the choice that each eigendirection is actually just motion in the

underlying linearized space of FF parameters.) These classes similarly permit the naming

scheme for the basis of variations to be adjusted by changing the vector of names using the

method renameFFEigenvectors, in order to accomodate different conventions for this matrix.

For example, if the eigenspace matrix is the identity, it is clearer to label the basis of

variations with respect to the parameter names, e.g. "delta_a1" for variation in the a1

B → D∗ BGL parameter and so forth (see Sec. V E). However, if the eigenspace matrix is

instead actual eigenvectors, one might prefer "delta_e1" and so on.

For example, if the X → Y FF class DemoVar has default basis {delta_a, delta_b,

delta_c, delta_d}, this may be changed via

ham.renameFFEigenvectors("XtoY", "DemoVar", {"delta_e1", "delta_e2", "delta_e3",

"delta_e4"});

This can be done before or after invocation of initRun. A warning will be thrown if the

renaming list is longer than the basis defined in the class. Passing a list of k names that is

shorter than defined in the class will rename only the first k; an empty string at the i-th

position leaves the name at the i-th position unchanged. For example, the list of names

{"", "delta_e2"} in the above example would leave "delta_a", change "delta_b", then leave

all remaining names unchanged.

As for WCs, the setFFEigenvectors method, when taking a map, produces incremental

settings changes. The method resetFFEigenvectors takes the name of the hadronic process

in "XtoY" form and the name of the FF parametrization, and resets the corresponding FF

eigenvectors to zero.

L. Specialization of Wilson Coefficients

One may wish to fix a priori all WCs of a specific type at the time of tensor weight

computation, in order to reduce space or reweighting times. This acheived with the meth-

ods specializeWCInWeights that takes the arguments required by setWilsonCoefficients. An

example usage

map<string, complex<double>> special{{"SM", 1.}, {"S_qLlL", 0.2i}, {"T_qLlL",

0.05}};

23

ham.specializeWCInWeights("BtoCTauNu", special);

would fix these specific b → cτν WCs and set all other b → cτν WCs to zero in all tensor

weight computations. Other WCs, such as those for b → cµν, would remain unfixed. This

method should be invoked after initRun.

Specialization is not reversible once a weight is computed in an initialization run by

processEvent. However a definition reset method resetSpecializeWCInWeights is also pro-

vided, which may e.g. be invoked before a subsequent initialization run to turn off the WC

specialization.

M. Histograms

Histograms of arbitrary dimensionality may be created by the Hammer library. In general,

histogram bins contain event weight tensors, which are direct products of the process weight

tensors for all processes in the event that are included by an includeDecay specification (and

not specifically removed by a later removeProcess invocation). It is up to the user to determine

programmatically which processes in an event are (or are not) included. For example, under

the include specification shown in Sec. III C, an event featuring B̄0 → (D∗+ → (D+ →
K+π+π−)γ)(τ− → `−νν) and B0 → D−µ+ν would have an event weight composed from

the product of both process weights, while an event featuring B̄0 → (D+(τ− → `−νν)

and B0 → D−µ+ν would just have an event weight equal to the process weight for the

B0 → D−µ+ν decay.

The event weight tensor may be contracted with arbitrary WCs to generate a posteriori

the corresponding histogram bin weight. Thus once a histogram is computed, it is computed

for all NP. More specifically, a contracted histogram contains elements that are BinContents

structs, with members sumWi, sumWi2 and n for sum of weights, sum of squared weights and

number of events in the bin, respectively.

1. Adding

A histogram is declared by Hammer::addHistogram, which takes as arguments a name string

and either: a vector of dimensions, a bool for under/overflow and a vector of ranges; or a

vector of bin edges and a bool for under/overflow. The method addHistogram does not create

a single histogram, but rather a histogram set : A separate histogram is created for each

unique event ID and in turn for each FF scheme name specified by addFFScheme. Here an

event ID is a set of process IDs for all processes included in the event.4 For instance

4 Because of histogram compression functionality discussed in Sec. III M 3 below, histograms are in practice

indexed by a event ID group, which is a set of event IDs: Without compression each event ID group is

just a trivial single element set containing the event ID of the histogram.

24

ham.addHistogram("q2VsEmu", {20, 15}, false, {{3.,12.},{0,2.5}});

creates a histogram set each with 20 × 15 bins, no under/overflow, binned uniformly over

the respective ranges 3–12 and 0–2.5 (in appropriate units). With reference to the above

addFFScheme example in Sec. III D, this histogram set contains one histogram for each combi-

nation of either "Scheme1" or "Scheme2" with each uniqueB → D decay cascade. Alternatively,

for non-uniform bins

ham.addHistogram("q2VsEmu", {{3.,5.,9.,12.},{0,1,2.5}}, true);

which creates a 3 × 2 histogram, with additional under/overflow bins. For an MC sample

with n unique event IDs and m declared FF schemes, the above addHistogram invocation

would create m× n unique 20× 15 histograms, all with the name "q2VsEmu".

2. Filling

Filling of histograms for a specific event is perfomed by Hammer::fillEventHistogram, which

takes the histogram name and the values of the observables corresponding to each histogram

dimension. (A deprecated method Hammer::setEventHistogramBin takes the indices of the bin

to be filled.) For example,

ham.fillEventHistogram("q2VsEmu", {4., 0.5});

fills the appropriate bin element for the "q2VsEmu" histograms belonging to the event be-

ing processed, and fills the relevant histograms for each FF scheme name. Invocations of

fillEventHistogram must occur before Hammer::processEvent. Otherwise, the relevant his-

togram will not be filled with the weight for event being processed: If fillEventHistogram is

not invoked for a particular histogram for a particular event, the event weight is not added

to the histogram. When the under/overflow bool is set to false, events outside the bin

ranges are ignored by fillEventHistogram.

A single bin histogram set "Total Sum of Weights" may be created via the method

Hammer::addTotalSumOfWeights, which takes additional bools for collapsing processes and

uncertainties (see Sec. III M 5). This method should invoked before initRun. The"Total Sum

of Weights" histogram, if it has been created, is automatically filled by processEvent.

3. Compression

In many use cases, the entire histogram set is not required, but rather its direct sum.

Computing and storing only the latter compressed form permits both speed gains and space

savings. The method Hammer::collapseProcessesInHistogram takes a name of a histogram,

25

and causes all members of the histogram set containing the same tensor structures to be

summed and collapsed into a single compressed histogram. For instance,

ham.collapseProcessesInHistogram("q2VsEmu");

This method should invoked before initRun. When invoked, each compressed histogram in

the histogram set is then indexed by non-trivial event ID groups, containing the event IDs

of all the histograms that were collapsed into it.

4. Retrieval

Once all events or histograms have been processed (or reloaded from a file, see Sec. IV)

the user may retrieve a specific histogram via the method Hammer::getHistogram, that

takes a histogram name and a FF scheme name. NP choices must be specified first via

setWilsonCoefficients, as must FF uncertainties via setFFEigenvectors if a parametrization

in the desired FF scheme has them. For example,

ham.setWilsonCoefficients("BtoCTauNu", {{"S_qRlL", 1.},{"S_qLlL", 0.5}});

auto histo = ham.getHistogram("q2VsEmu", "Scheme2");

would contract the bin weights with the specified NP Wilson coefficients (and FF eigenvec-

tors, if any) for each histogram in the "q2VsEmu" histogram set populated for "Scheme2", and

then combines them together into a single final histogram. This contracted histogram out-

put histo is a (row-major) flattened vector of BinContents structs. By contrast, the method

getHistograms (note the plural) extracts all histograms of a specific name and scheme. For

example

auto histos = ham.getHistograms("q2VsEmu", "Scheme2");

produces a map of eventIDs to histogram for all available "q2VsEmu" histograms with FF

scheme "Scheme2".

5. Specialization

In a specific histogram one may wish to fix a priori all WCs of a specific type or all

FF indices for a particular scheme, in order to reduce space or reweighting times. This

acheived with the methods specializeWCInHistogram and specializeFFInHistogram respectively,

that take the histogram name plus the arguments required by setWilsonCoefficients or

setFFEigenvectors. An example usage

map<string, complex<double>> special{{"SM", 1.}, {"S_qLlL", 0.2i}, {"T_qLlL",

0.05}};

ham.specializeWCInHistogram("q2VsEmu", "BtoCTauNu", special);

26

would fix these specific b → cτν WCs and set all other b → cτν WCs to zero only in the

"q2VsEmu" histogram. Other WCs, such as those for b → cµν, would remain unfixed. This

method should be invoked after initRun.

Specialization is not reversible once a histogram is filled in an initialization run. However

a definition reset method resetSpecializationInHistogram is also provided, which may e.g.

be invoked before a subsequent initialization run to reset the histogram definition to the

default and turn off its specializations.

6. Uncertainties

Computation of the weight-squared uncertainties (accessed from the BinContents struct

via sumWi2) is off by default. This may be enabled globally via the options setting

ham.setOptions("Histos: {KeepErrors: true}"). However, for computational speed and/or

memory efficiency, it may be instead enabled or disabled for individual histograms via

Hammer::keepErrorsInHistogram, which takes the name of the histogram as an argument, and

a bool. For instance

ham.keepErrorsInHistogram("q2VsEmu", true);

enables weight-squared computation for this particular histogram. This method should be

invoked before initRun.

7. Projection

On occasion it may be useful to project a pre-computed n-dimensional histogram onto a

lower dimensional one. This can be achieved via the method createProjectedHistogram, which

takes the name of the original n-dimensional histogram, the name of the new histogram to

be created, and a set of the index positions to be summed over or collapsed. For instance,

for a 3-dimensional histogram "q2VsEmuVsM2miss" with dimensions q2, Eµ and m2
miss, one may

integrate over the Eµ and m2
miss dimensions to create a 1-dimension q2 histogram via

ham.createProjectedHistogram("q2VsEmuVsM2miss", "justq2", {1,2});

in which the new histogram, named "justq2", inherits the underlying structure – the his-

togram set – of the original histogram.

N. Pure phase space vertices

The Hammer library permits the user to declare particular vertices, in either the denom-

inator or numerator amplitude, to be evaluated as pure phase space. This is achieved by

the method Hammer::addPurePSVertices, which takes a set of string vertices as an argument,

27

and an optional enum WTerm value to declare whether the evaluation should be applied to

the numerator and/or denominator (numerator by default). The enum WTerm has values

{COMMON, NUMERATOR, DENOMINATOR}

As an example

ham.addPurePSVertices({"TauMuNuNu","D*+DPi"});

ham.addPurePSVertices({"D*DGamma"}, WTerm::DENOMINATOR);

declares all τ → µνν and D∗+ → Dπ vertices in the numerator and all D∗ → Dγ vertices in

the denominator, to be evaluated as phase space (subject to the rules below). The equivalent

initialization card definition is

PurePSVertices:

Numerator: [TauMuNuNu, D*+DPi]

Denominator: [D*DGamma]

The library employs the pure phase space definition

1∏
k |{sk}|

∑
si,rj

∣∣Ms1,...,sn;r1,...,rm

∣∣2 = 1× (m6−2n) , (13)

where si (ri) are incoming (outgoing) quantum numbers, |{sk}| is the number of states of

sk, m is the mass of the parent particle in the vertex, and n the number of daughters.

I.e., the squared matrix element averaged over initial states and summed over final states is

set to unity times a factor that preserves dimsionality of the overall amplitude. Upon the

declaration of a vertex as PS, averaging over the initial states of all immediate (non-PS)

daughter vertices is automatically performed.

The declaration of a vertex as phase space within an edge may be ambiguous, if the other

vertex is not declared as PS too. This ambiguity is resolved by the library by an exclusive

implementation of the addPurePSVertices method, according to the following rules:

(i) If both vertices in an edge are declared as PS, the edge is set to PS.

(ii) The declaration of a single vertex in an edge as PS is obeyed only if the remaining

vertex has a known vertex amplitude.

Labelling a PS declaration by an underlaid cross, i.e. or , these rules are represented as

follows:

Edge is set to PS

Declaration refused; a warning is thrown

Edge is set to PS

Declaration refused; a warning is thrown

Edge is replaced by remaining

Edge is set to PS

Edge is replaced by remaining

28

An example of these rules are shown in Table V for the examples of Table II, based on the

process tree in Fig. 2. In the first example, the declaration of vertex 1 as pure phase space

is accepted, with the 0–1 edge being replaced by the known vertex amplitude at vertex

0. In the second example, the declaration is refused, since vertex 5 cannot be evaluated

independently.

Known Amplitudes Evaluated Amplitudes

0

1

5

2 0 , 2 , 5

0

1

5

2 0 , 1 5 , 2

TABLE V. Example arithmetic for filling amplitudes for the examples of Tab. II, with an additional

phase space declaration on vertex 1.

O. PHOTOS

Typical MC samples include collinear radiative corrections, incoherently appended to the

relevant vertices by the PHOTOS algorithm [41], ignoring typically negligible interference

effects. Inclusion of such (typically very soft) radiative photons requires the vertex (and all

daughter vertex) momenta to be rebalanced, such that overall momentum remains conserved.

For the purpose of reweighting the truth level process, these photons must be pruned from

the process tree, which in turn requires an reversion of the kinematic rebalancing. (As

such, because they are automatically pruned, radiative photons need not be specified in

includeDecay or forbidDecay specifications.)

The effect of the kinematic rebalancing on the actual event weight is generally negligible:

The main concern is to ensure momentum conservation in the process tree once the photon

is removed. With this in mind, and following the PHOTOS prescription for kinematic

rebalancing [41], the Hammer library therefore identifies radiative photons, and reverts the

kinematics to pre-radiative corrected form, by the following procedure:

(i) If a vertex contains 3 or more particles, with at least one photon, the softest photon

is identified as radiative.

29

(ii) The radiative photon, γrad, is assumed to be associated with the nearest charged

particle, labelled ‘ch’, in the polar angle distance, δθ.

(iii) The radiative vertex, and all daughter particles, are then partitioned into: The parent

particle, ‘P’; The charged particle, ‘ch’, and all its descendants, the ‘ch subtree’; All

other particles in the radiative vertex except γrad, collectively called ‘Y ’, and all their

descendants, the ‘Y subtree’. The radiative vertex is thus written P → ch + Y + γrad.

(iv) The ch and Y subtrees are boosted to the pch+pY rest frame, Rch+Y , so that necessarily

pch and pY are back-to-back.

(v) In Rch+Y frame, writing pY = (EY ,pY) and pch = (Ech,pch), the ch subtree and Y

subtree are then independently longitudinally boosted by

βγch =
Ech|p∗| − E∗ch|pch|

m2
ch

, βγY =
EY |p∗| − E∗Y |pY |

m2
Y

, (14)

in which the starred quantities are the usual P rest frame kinematic objects for the

two body decay P → ch + Y , i.e.

E∗ch =
m2
P −m2

Y +m2
ch

2mP

, E∗Y =
m2
P −m2

ch +m2
Y

2mP

, |p∗| = mP

2
λ1/2

[
mY

mP

,
mch

mP

]
,

(15)

with λ(x, y) = (1−(x+y)2)(1−(x−y)2). Under these independent boosts, momentum

conservation is restored to the P → ch + Y vertex with γrad removed.

(vi) The ch and Y subtrees are then boosted to the frame such that pch + pY = pP , the

latter meaning the actual momentum of particle P in the process tree.

(vii) This process is repeated until (i) is no longer true.

P. Rates

The library provides the means to compute the partial width for a particular vertex via

Hammer::getRate, which takes as argument either a vertex string or the parent and daughter

PDG codes, plus a scheme. It may also take a vertex hashID, obtainable from a spe-

cific process via Process::getVertexId. Partial widths are returned in the units specified by

Hammer::setUnits; the default is GeV (see Sec. III G). For example

ham.getRate(511, {-413, -14, 13}, "Scheme2");

ham.getRate("B0D*-MuNu", "Scheme2");

both return the partial width for the B0 → D∗−µ+ν vertex, using the form factor param-

eterization specified in "Scheme2", and using whatever WCs or FF uncertainties have been

specified. At present, the getRate method is charge conjugate sensitive, so in a vertex string

30

one must specify sufficient charges to make the vertex charge unique. (For example, writing

just "B0D*MuNu" would have corresponded to not only B0 → D∗−µ+ν, but also the (very

heavily suppressed) process B0 → D+µ−ν̄.) The method getDenominatorRate takes just the

vertex argument, and returns the partial width according to the specified denominator/input

FF parametrization chosen in setFFInputScheme, and the denominator/input WCs.

Vertices involving new physics and/or form factor parametrizations have rates imple-

mented in dedicated classes, and integrated over q2 (and other invariants as needed) via

Gaussian quadrature. Other partial widths, e.g. for D∗ → Dπ or τ → `νν, are obtained

from the SM branching ratios and widths specified in the Pdg class. The partial width for

each unique vertex is computed only once per run, being computed and stored the first

time each unique vertex in encountered in a process. Rates are computed vertex-wise inside

edges. Hence e.g. while an edge is computed as a single amplitude, the rates for the

known and unknown vertices are computed and stored independently. If a vertex is set to

pure PS (or successfully set to pure PS inside an edge, see Sec. III N) then following the PS

definition (13) the returned rate for that vertex is the phase space rate

ΓPSn =
1

2m

∫
m6−2ndPSn . (16)

The rates for vertices whose amplitudes have no form factor – they are not required to

be specified in a FF scheme – are automatically assigned to each scheme name relevant

for the decay process to which they belong. For example in a B → D(τ → µνν)ν decay

with schemes "Scheme1" and "Scheme2", the τ → µνν partial width can be retrieved via

ham.getRate("Tau+Mu+NuNu", "Scheme1") or ham.getRate("Tau+Mu+NuNu", "Scheme2").

Q. Multithreading

The library has the ability to perform lock-free parallelization of the getHistogram(s) and

getWeight evaluations. This requires use of the thread local methods setWilsonCoefficientsLocal

and setFFEigenvectorsLocal to set the desired WC or FF uncertainties.

The ...Local methods take the same syntax as their global versions setWilsonCoefficients

and setFFEigenvectors, but with different behaviour: They do not set the values incremen-

tally from the current settings, but always increment from the SM and zero FF uncertainties,

respectively. Global values of the WCs or FF variations are unaffected by the ...Local meth-

ods, but the global set... methods should not be used in a multithreaded run.

IV. THE HAMMER BUFFER

Hammer provides the ability to store header settings, generated event weights, histograms,

and/or rates in binary buffers for later retrieval and reprocessing. These buffers are built

on the cross-platform serialization library flatbuffers: The buffer structs Hammer::IOBuffer

31

and Hammer::RootIOBuffer permit writing/reading of binary files of Hammer internal and ROOT

objects, respectively. In order to save a buffer, an ofstream outfile must first be designated.

For example,

ofstream outFile("./DemoSave.dat",ios::binary);

A. Saving

1. Headers, Events and Rates

The methods Hammer::save... return a IOBuffer, which can be stored as sequential records

in the buffer via an ostream operator. For example,

outFile << ham.saveRunHeader();

writes the declared run header, with all its settings, into an IOBuffer and passes it as a record

into the buffer. The available record types are labelled by an enum char Hammer::RecordType

with values UNDEFINED = 'u', HEADER = 'b', EVENT = 'e', HISTOGRAM = 'h', HISTOGRAM_DEFINITION

= 'd', and RATE = 'r'. (Note the saveOptionCard method instead takes a filename and a bool

for whether to write default values (true, default) versus modified settings (false). Output

is written in text to the specified file.) Any combination of save methods may be invoked,

in any order.

The method saveEventWeights saves the event weights of the currently initialized and

processed event (there may be multiple weights saved if there are multiple processes in the

event). This method should be invoked only after processEvent. Similarly, saveRates writes

all rates computed during the event loop.

2. Histograms

The method saveHistogram, when taking only a histogram name as an argument, saves

the entire specified histogram set (each histogram in an histogram set occupies an individual

buffer record). For example,

outFile << ham.saveHistogram("q2VsEmu");

saves all the unique "q2VsEmu" histograms, corresponding to the unique event IDs and

declared FF schemes, subject to compression settings (see Sec. III M 3). Invocation of

saveHistogram automatically also saves an additional separate buffer record for the histogram

definition, immediately preceding the histogram record itself.

The saveHistogram method may optionally take additional arguments – either an FF

scheme name or an event ID group – in order to save only part of an entire histogram set,

if e.g. space or file sizes are too large for an entire histogram set. For instance,

32

outFile << ham.saveHistogram("q2VsEmu", "Scheme2");

saves only the those histograms in the histogram set computed for Scheme2 and not for any

other schemes that may have been declared. If event ID groups are known, one may instead

save histograms for one group, eventIDgroup, via

outFile << ham.saveHistogram("q2VsEmu", eventIDgroup);

Attempting to save a histogram that does not exist will result in an exception.

3. ROOT

Saving a buffer in ROOT format is achieved by passing the IOBuffer output of the save...

methods into a RootIOBuffer, that may then be stored in a ROOT TTree. Explicit implementa-

tions of this functionality are provided in various demo...root.cc example programs.

B. (Re)loading

Buffer records may be loaded from a declared ifstream infile into an IOBuffer via an istream

operator, using load... methods with the same nomenclature as the save... methods. For

example,

ifstream inFile("./DemoSave.dat", ios::binary);

Hammer::IOBuffer buf{Hammer::RecordType::UNDEFINED, 0ul, nullptr};

inFile >> buf;

ham.loadRunHeader(buf);

attempts to load the first buffer record as a run header (returning false if this record is of

a different type).

It is the responsibility of the user to curate the logic and order under which a buffer is

saved and then read. For example, if a block of histograms have been saved before a set of

rate records, then

while(buf.kind != Hammer::RecordType::RATE) {

if(buf.kind == Hammer::RecordType::HISTOGRAM) {

ham.loadHistogram(buf);

}

if(buf.kind == Hammer::RecordType::HISTOGRAM_DEFINITION){

ham.loadHistogramDefinition(buf);

}

inFile >> buf;

33

}

would read through the buffer, with the method Hammer::loadHistogram loading all the his-

tograms, and Hammer::loadHistogramDefinition all the histogram definitions, that are found

before reaching the block of saved rates. (One could instead have used while(buf.kind !=

Hammer::RecordType::UNDEFINED) to simply read through the entire buffer.)

Once an object is loaded, it behaves just as the originally computed instance. Thus one

may invoke getHistogram for a reloaded histogram as described in Sec. III M 4. (The method

removeHistogram takes a histogram name and permits deletion of that histogram from the

instance.)

Event weights can be reloaded via loadEventWeights. This permits recreating the original

event loop provided initEvent and processEvent are called appropriately. For example, on a

block of saved event records

while(buf.kind == Hammer::RecordType::EVENT) {

ham.initEvent();

ham.loadEventWeights(buf);

double q2 = ...; //Calculate q^2 from known kinematic event information

ham.fillEventHistogram("Q2", {q2});

ham.processEvent();

inFile >> buf;

}

would permit reprocessing of saved event weights into a newly created "Q2" histogram.

The method loadRates behaves similarly to loadHistogram. Event weights can be reloaded

via loadEventWeights, recreating the original event loop provided initEvent and processEvent

are called appropriately. For example,

inFile >> buf;

while(buf.kind == Hammer::RecordType::EVENT) {

ham.initEvent();

ham.loadEventWeights(buf);

double q2 = ...;

ham.fillEventHistogram("Q2", {q2});

ham.processEvent();

inFile >> buf;

}

would permit reprocessing of saved event weights into a newly created "Q2" histogram.

Loading a buffer in ROOT format is achieved by reading the RootIOBuffer stored in a TTree

into an IOBuffer that can be passed to the load... methods. Explicit implementations of

this functionality are provided in various demo...root.cc example programs.

34

C. Parallelization and merging

In order to permit parallelization of initialization analyses, the load... methods accept

an additional bool, to specify whether to merge the buffer contents with existing objects in

memory (true), or overwrite them (false, default).

First, loadRunHeader permits merging of two sets of header settings into their union, with

errors thrown for matching settings with non-matching values. When merging, the first

invocation of loadRunHeader should be called with the merge bool set to false, and subsequent

invocations set to true. (The other load methods may be uniformly called with the merge

bool set to true.)

Merging of histograms occurs if two histograms are loaded with a matching name. This

merging is additive for histograms in each histogram set with the same event ID group

and FF scheme, and otherwise results in the new unique histograms being appended to the

existing histogram set. (If one wishes instead to overwrite a histogram one may instead first

invoke removeHistogram, and then reload the desired components of the histogram set.)

Errors are thrown if the matching histograms do not have compatible shapes or bin

contents. For instance, if the "q2VsEmu" histogram is loaded via

inFile1 >> buf;

ham.loadHistogram(buf);

subsequently loading an identically named histogram from a second infile via

inFile2 >> buf;

ham.loadHistogram(buf, true);

will merge the two histograms together according to the above rules.

The methods loadEventWeights and loadRates behave similarly. For weights (rates) with

matching process ID (event ID), merging permits appending of process weights (rates) com-

puted with new form factor schemes to the process weights (rates). In the case of merging

rates, errors are thrown if a form factor scheme by the same name already exists for the

same decay and the rate tensors do not match.

V. CONVENTIONS

A. Vcb

The Vcb prefactor is generally not included explicitly in the b → c amplitudes, form

factor parameters or rates. (One exception is the BGL parametrization, whose parameters

typically absorb a factor of VcbηEW. In order to preserve uniformity among the form factor

schemes, this factor is divided out of the BGL form factors.)

35

B. NP operator basis

A complete basis for the four-Fermi operators mediating b→ c¯̀ν decay, including right-

handed neutrinos, is shown in Table VI. The NP couplings to the quark and lepton currents

are denoted by χij and λij, respectively, and may in general be complex numbers. The lower

index of λ denotes the ν helicity and the lower index of χ is that of the b quark. The NP

couplings are normalized with respect to the SM current.

Current WC Tag WC 4-Fermi/(i2
√

2VcbGF)

SM SM 1
[
c̄γµPLb

][
¯̀γµPLν

]

Vector

V_qLlL χVLλ
V
L

[
c̄χVLγ

µPLb
][

¯̀λVLγµPLν
]

V_qRlL χVRλ
V
L

[
c̄χVRγ

µPRb
][

¯̀λVLγµPLν
]

V_qLlR χVLλ
V
R

[
c̄χVLγ

µPLb
][

¯̀λVRγµPRν
]

V_qRlR χVRλ
V
R

[
c̄χVRγ

µPRb
][

¯̀λVRγµPRν
]

Scalar

S_qLlL χSLλ
S
L

[
c̄χSLPLb

][
¯̀λSLPLν

]
S_qRlL χSRλ

S
L

[
c̄χSRPRb

][
¯̀λSLPLν

]
S_qLlR χSLλ

S
R

[
c̄χSLPLb

][
¯̀λSRPRν

]
S_qRlR χSRλ

S
R

[
c̄χSRPRb

][
¯̀λSRPRν

]

Tensor
T_qLlL χTLλ

T
L

[
c̄ χTLσ

µνPLb
][

¯̀λTLσµνPLν
]

T_qRlR χTRλ
T
R

[
c̄ χTRσ

µνPRb
][

¯̀λTRσµνPRν
]

TABLE VI. NP operator basis, and coupling conventions.

These conventions correspond to the conventions of Refs. [42] via

χVL = αVL
∗ , χVR = αVR

∗ ,

χSR = −αSL∗ , χSL = −αSR∗ ,
χTR = −αTL∗ , χTL = −αTR∗ ,

λV,S,TL = βV,S,TL
∗ , λV,S,TR = βV,S,TR

∗ . (17)

All internal Hammer calculations are done in the αijβ
k
l basis of Ref. [42], which is naturally

defined for b̄ → c̄`ν transitions and their corresponding b̄Γc operators. Since, however,

specification of WCs with respect to c̄Γb operators is the predominant convention, Hammer

36

inputs are specified in the χijλ
k
l WC basis. In the conventions of Ref. [23], χ = α̃, and λ = β̃,

but we discard this tilded notation hereafter, so that there is no potential confusion as to

which convention the WC tag subscripts, ‘_qXlX’, adhere.

C. Lorentz signs

For all amplitudes encoded into Hammer, we use a trace −2 metric, and the Lorentz sign

conventions

Tr[γµγνγσγργ5] = −4iεµνρσ , ε0123 = +1 . (18)

These choices fully specify all other possible ambiguous signs, for example the γ5 trace choice

is equivalent to σµνγ5 ≡ + i
2
εµνρσσρσ, with σµν = i

2
[γµ, γν] .

D. Form Factors and Maps

1. B → D

The B → D form factor tensor has ordered components

FFD =
{
fS, f0, f+, fT

}
, (19)

which are defined via〈
D
∣∣ c̄ b ∣∣B〉 ≡ fS , (20a)〈

D
∣∣ c̄γµb ∣∣B〉 ≡ f+(pB + pD)µ + [f0 − f+]

m2
B −m2

D

q2
qµ , (20b)〈

D
∣∣ c̄σµνb ∣∣B〉 ≡ ifT

[
(pB + pD)µqν − (pB + pD)νqµ

]
. (20c)

These definitions map to the conventional dimensionless form factor set hS, h+, h−, hT , as

defined in e.g. Ref. [19], via

fS =
√
rD(w + 1)mBhS , (21a)

f0 =

√
rD

r2
D − 1

[
(rD + 1)(w − 1)h− + (rD − 1)(w + 1)h+

]
(21b)

f+ =
(rD − 1)h− + (rD + 1)h+

2
√
rD

, (21c)

fT =
hT

2
√
rDmB

, (21d)

with rD = mD/mB. The B → D form factors hi are defined under the sign convention

Tr[γµγνγσγργ5] = +4iεµνρσ, which is accounted for in eqs. (21).

37

2. B → D∗

The B → D∗ form factor tensor has ordered components

FFD∗ =
{
a0, f, g, a−, a+, aT0 , aT− , aT+

}
, (22)

which are defined via〈
D∗
∣∣ c̄γ5b

∣∣B〉 ≡ a0 ε
∗ · pB , (23a)〈

D∗
∣∣ c̄γµb ∣∣B〉 ≡ −ig εµνρσ ε∗ν (pB + pD∗)ρ qσ , (23b)〈

D∗
∣∣ c̄γµγ5b

∣∣B〉 ≡ ε∗µf + a+ ε
∗ · pB (pB + pD∗)

µ + a− ε
∗ · pB qµ , (23c)〈

D∗
∣∣ c̄σµνb ∣∣B〉 ≡ −aT+ εµνρσε∗ρ(pB + pD∗)σ − aT− εµνρσε∗ρ qσ

− aT0 ε∗ · pB εµνρσ(pB + pD∗)ρ qσ . (23d)

These definitions map to the conventional dimensionless form factor set hP , hV , hA1,2,3 , hT1,2,3 ,

as defined in e.g. Ref. [19], via

a0 = −√rD∗hP , (24a)

f =
√
rD∗(w + 1)mBhA1 , (24b)

g =
hV

2
√
rD∗mB

, (24c)

a− =
hA3 − rD∗hA2

2
√
rD∗mB

, (24d)

a+ = −rD∗hA2 + hA3

2
√
rD∗mB

, (24e)

aT0 =
hT3

2
√
rD∗m2

B

, (24f)

aT− =
(1− rD∗)hT1 − (rD∗ + 1)hT2

2
√
rD∗

, (24g)

aT+ =
(1− rD∗)hT2 − (rD∗ + 1)hT1

2
√
rD∗

. (24h)

with rD∗ = mD∗/mB. The B → D∗ form factors hi are defined under the sign convention

Tr[γµγνγσγργ5] = +4iεµνρσ, which is accounted for in eqs. (24).

3. B → D∗∗

The B → D∗∗ form factor tensors are ordered

FFD∗0 =
{
gP , g+, g−, gT

}
, (25a)

FFD∗1 =
{
gS, gV1 , gV2 , gV3 , ga, gT1 , gT2 , gT3

}
, (25b)

38

FFD1 =
{
fS, fV1 , fV2 , fV3 , fa, fT1 , fT2 , fT3

}
, (25c)

FFD∗2 =
{
kP , kA1 , kA2 , kA3 , kV , kT1 , kT2 , kT3

}
, (25d)

which following Ref. [23], are defined for B → D∗0 via〈
D∗0
∣∣ c̄ b ∣∣B〉 =

〈
D∗0
∣∣ c̄γµb ∣∣B〉 = 0 ,〈

D∗0
∣∣ c̄γ5b

∣∣B〉 =
√
mD∗0

mB gP ,〈
D∗0
∣∣ c̄γµγ5b

∣∣B〉 =
√
mD∗0

mB

[
g+(vµ + v′µ) + g−(vµ − v′µ)

]
,〈

D∗0
∣∣ c̄σµνb ∣∣B〉 =

√
mD∗0

mB gT εµναβ v
αv′β , (26a)

for B → D∗1,〈
D∗1
∣∣ c̄ b ∣∣B〉 = −√mD∗1

mB gS (ε∗ · v) ,〈
D∗1
∣∣ c̄γ5b

∣∣B〉 = 0 ,〈
D∗1
∣∣ c̄γµb ∣∣B〉 =

√
mD∗1

mB

[
gV1 ε

∗
µ + (gV2vµ + gV3v

′
µ) (ε∗ · v)

]
,〈

D∗1
∣∣ c̄γµγ5b

∣∣B〉 = i
√
mD∗1

mB gA εµαβγ ε
∗αvβ v′γ , (26b)〈

D∗1
∣∣ c̄σµνb ∣∣B〉 = i

√
mD∗1

mB

[
gT1(ε

∗
µvν − ε∗νvµ) + gT2(ε

∗
µv
′
ν − ε∗νv′µ) + gT3(ε

∗ ·v)(vµv
′
ν − vνv′µ)

]
.

for B → D1,〈
D1

∣∣ c̄ b ∣∣B〉 =
√
mD1mB fS (ε∗ · v) ,〈

D1

∣∣ c̄γ5b
∣∣B〉 = 0 ,〈

D1

∣∣ c̄γµb ∣∣B〉 =
√
mD1mB

[
fV1 ε

∗
µ + (fV2vµ + fV3v

′
µ)(ε∗ · v)

]
,〈

D1

∣∣ c̄γµγ5b
∣∣B〉 = i

√
mD1mB fA εµαβγε

∗αvβv′γ , (26c)〈
D1

∣∣ c̄σµνb ∣∣B〉 = i
√
mD1mB

[
fT1(ε

∗
µvν − ε∗νvµ) + fT2(ε

∗
µv
′
ν − ε∗νv′µ) + fT3(ε

∗ ·v)(vµv
′
ν − vνv′µ)

]
,

and finally for B → D∗2,〈
D∗2
∣∣ c̄ b ∣∣B〉 = 0 ,〈

D∗2
∣∣ c̄γ5b

∣∣B〉 =
√
mD∗2

mB kP ε
∗
αβ v

αvβ ,〈
D∗2
∣∣ c̄γµb ∣∣B〉 = i

√
mD∗2

mB kV εµαβγ ε
∗ασvσv

βv′γ ,〈
D∗2
∣∣ c̄γµγ5b

∣∣B〉 =
√
mD∗2

mB

[
kA1 ε

∗
µαv

α + (kA2vµ + kA3v
′
µ) ε∗αβ v

αvβ
]
, (26d)〈

D∗2
∣∣ c̄σµνb ∣∣B〉 =

√
mD∗2

mB εµναβ
{

[kT1(v + v′)α + kT2(v − v′)α)] ε∗γβvγ + kT3 v
αv′βε∗ρσvρvσ

}
.

(NB: In the case of the ISGW2 FF parametrization for the D1 and D∗1, EvtGen includes

an additional ad hoc ‘smearing’ by the factor
√
q2

max,mean/q
2
max on each form factor. This is

included by default, but can be deactivated via the bool setting "SmearQ2".)

39

4. Λb → Λc

The Λ0
b → Λ+

c form factor tensor has ordered components

FFΛc =
{
hS, hP , f1, f2, f3, g1, g2, g3, h1, h2, h3, h4

}
, (27)

The form factors are defined as in Ref. [27], using the sign convention Tr[γµγνγσγργ5] =

−4iεµνρσ, via

〈Λc(p
′, s′)|c̄ b|Λb(p, s)〉 = hS ū(p′, s′)u(p, s) , (28a)

〈Λc(p
′, s′)|c̄γ5b|Λb(p, s)〉 = hP ū(p′, s′) γ5 u(p, s) , (28b)

〈Λc(p
′, s′)|c̄γνb|Λb(p, s)〉 = ū(p′, s′)

[
f1γµ + f2vµ + f3v

′
µ

]
u(p, s) , (28c)

〈Λc(p
′, s′)|c̄γνγ5b|Λb(p, s)〉 = ū(p′, s′)

[
g1γµ + g2vµ + g3v

′
µ

]
γ5 u(p, s) , (28d)

〈Λc(p
′, s′)|c̄ σµν b|Λb(p, s)〉 = ū(p′, s′)

[
h1 σµν + i h2(vµγν − vνγµ) + i h3(v′µγν − v′νγµ) (28e)

+ i h4(vµv
′
ν − vνv′µ)

]
u(p, s) . (28f)

The spinors are normalized to ū(p, s)u(p, s) = 2m. (Note that another common definition

for the SM form factors is [43]

〈Λc(p
′, s′)|c̄γµb|Λb(p, s)〉 = ū(p′, s′)

[
F1 γµ − iF2 σµν q

ν + F3 qµ
]
u(p, s) ,

〈Λc(p
′, s′)|c̄γµγ5b|Λb(p, s)〉 = ū(p′, s′)

[
G1 γµ − iG2 σµν q

ν +G3 qµ
]
γ5 u(p, s) . (29)

The notation of Ref. [43] also exchanges upper and lowercase symbols – i.e. Fi ↔ fi and

Gi ↔ gi – with respect to Eqs. (28) and (29).)

5. B → ρ, ω

The B → ρ or ω decays have form factor tensor with ordered components

FFρ,ω =
{
AP , V, A0, A1, A12, T1, T2, T23

}
, (30)

which are defined as in Ref. [25]. Explicitly,

√
2
〈
V
∣∣ ūγ5b

∣∣B〉 ≡ AP ε
∗ · q , (31a)

√
2
〈
V
∣∣ ūγµb ∣∣B〉 ≡ − iV

mB +mV

εµνρσ ε∗ν (pB + pV)ρ qσ , (31b)

√
2
〈
V
∣∣ ūγµγ5b

∣∣B〉 ≡ A1(mB +mV)ε∗µ − A2
(pB + pV)µ ε∗ · q

mB +mV

(31c)

+
ε∗ · q qµ
q2

[
A2(mB −mV)− A1(mB +mV) + 2mVA0

]
, (31d)

√
2
〈
V
∣∣ ūσµνb ∣∣B〉 ≡ εµνρσ

[
T1ε

∗
ρ(pB + pV)σ − (T2 + T1)

m2
B −m2

V

q2
ε∗ρqσ (31e)

40

+ (pB + pV)ρqσ
ε∗ · q
q2

(
(T1 + T2) + T3

q2

m2
B −m2

V

)]
, (31f)

with the additional redefinitions with respect to A12 and T23,

A2 =
A1(m2

B −m2
V − q2)(mB +mV)2 − 16A12mBm

2
V (mB +mV)

4|pV |2m2
B

, (32a)

T3 =
T2(m2

B + 3m2
V − q2)(m2

B −m2
V)− 8T23mBm

2
V (mB −mV)

4|pV |2m2
B

, (32b)

with |pV | the vector meson 3-momentum in the B rest frame.

Light-cone sum rule results (LCSR) results are available for both the SM and NP form

factors, parametrized by an optimized z expansion, in the form of a correlated, beyond zero

recoil fit between the SM and NP form factors [25]. This LCSR-based parametrization is

referred to as ‘BSZ’.

6. Λb → Λ∗c(2595) and Λ∗c(2625)

The Λ0
b → Λ∗c form factor tensors have ordered components

FFΛ∗c(2595) =
{
dS, dP , dV 1, dV 2, dV 3, dA1, dA2, dA3, dT1, dT2, dT3, dT4

}
, (33a)

FFΛ∗c(2625) =
{
lS, lP , lV 1, lV 2, lV 3, lV 4, lA1, lA2, lA3, lA4, lT1, lT2, lT3, lT4, lT6, lT7

}
. (33b)

following the conventions and definitions in Ref. [31]. The form factor lT5 must be eliminated,

according to the kernel of the Λb → Λ∗c(2625) amplitudes, after matching onto HQET or a

particular model of interest. See Ref. [31].

Explicitly, representing Λb and Λ∗c(2595) by spinors ub(p, s) and ūc(p
′, s′), respectively,

with momenta p = mΛb
v and p′ = mΛ∗cv

′, the form factors dX are defined via

〈Λ∗c(2595)|c̄ b|Λb〉 = −dS ūcγ5ub , (34)

〈Λ∗c(2595)|c̄γ5b|Λb〉 = −dP ūc ub ,
〈Λ∗c(2595)|c̄γµb|Λb〉 = ūc

[
dV 1γµ + dV 2vµ + dV 3v

′
µ

]
γ5ub ,

〈Λ∗c(2595)|c̄γµγ5b|Λb〉 = ūc
[
dA1γµ + dA2vµ + dA3v

′
µ

]
ub ,

〈Λ∗c(2595)|c̄ σµν b|Λb〉 = −ūc
[
dT1 σµν + i dT2v[µγν] + i dT3v

′
[µγν] + i dT4v[µv

′
ν]

]
γ5ub ,

The charmed spin-3/2 state is represented by a Rarita-Schwinger tensor, Ψµ
c (p′, s′), satisfying

the usual transversity and projective conditions v′ ·Ψc = 0 and γ ·Ψc = 0. The form factors

lX are then defined via

〈Λ∗c(2625)|c̄ b|Λb〉 = lS v ·Ψcub , (35)

〈Λ∗c(2625)|c̄γ5b|Λb〉 = lP v ·Ψcγ5ub ,

〈Λ∗c(2625)|c̄γµb|Λb〉 = v ·Ψc

[
lV 1γµ + lV 2vµ + lV 3v

′
µ

]
ub + lV 4Ψcµub ,

41

〈Λ∗c(2625)|c̄γµγ5b|Λb〉 = v ·Ψc

[
lA1γµ + lA2vµ + lA3v

′
µ

]
γ5ub + lA4Ψcµγ5ub ,

〈Λ∗c(2625)|c̄ σµν b|Λb〉 = v ·Ψc

[
lT1 σµν + i lT2v[µγν] + i lT3v

′
[µγν] + i lT7v[µv

′
ν]

]
ub

+ iΨc[µ

[
lT4 γν] + lT5vν] + lT6v

′
ν]

]
ub .

E. Form Factor uncertainties

At present, e.g. the BGLVar parametrization permits via setFFEigenvectors functionality

(see Sec. III J) direct manipulation of the ai, bi, ci and di parameters for B → D∗ (also

denoted agi , a
f
i , a

F1
i and aP1

i , respectively, in some notational conventions). That is, the

covariance matrix is set to the identity, and the basis of variations

{"delta_a0","delta_a1","delta_a2","delta_b0","delta_b1","delta_b2",

"delta_c1","delta_c2", "delta_d0","delta_d1"} ,

Similary the a
f+
i and af0i , i = 0, . . . , 3 parameters are directly manipulated for B → D (also

denoted ai and bi, respectively, in some notational conventions), with respect to the basis

{"delta_ap0","delta_ap1","delta_ap2","delta_ap3",

"delta_a00","delta_a01","delta_a02","delta_a03"} .

By contrast, the linearized form of the B → ρ, ω LCSR-based parametrization, referred

to as ‘BSZVar’, features a non-trivial covariance matrix. At present we include just the first

eight principal directions of the 21 parameter fit, in the basis

{"delta_e1","delta_e2","delta_e3","delta_e4","delta_e5","delta_e6",

"delta_e7","delta_e8"} .

Each covariance eigenvector ei is normalized by the square-root of its eigenvalue
√
λi, so

that unit variation in each "delta_ei" corresponds to a 1σ variation.

A large number of other Var classes are available in the library: the implemented basis of

parameters may be easily read off each class implementation.

F. D∗∗ strong decays

The library incorporates the strong decays D1 → D∗π, D∗2 → D(∗)π. While the latter

can proceed only via d-wave, the former proceeds by d-wave at leading order in HQET but

may include s-wave contributions at subleading order [44–46], that may be thought of a

contribution arising from D∗1–D1 mixing. When D∗∗ decays are included in a run, a ‘form-

factor’ parametrization for them must be specified in each FF scheme: At present the only

partial-wave parametrization ‘PW’ is included.

42

The explicit D1 → D∗π partial-wave amplitude

Aλκ
D+

1 →D∗π
=

1

fπ

(
D√

6
+

√
3

2
S

)[
E∗D∗ −mD∗

mD1

ε−λ1 ·pπ εκ∗ ·pπ + |pπ|2ε−λ1 ·εκ∗
]

(36)

+
D√

6

3mD∗

mD1

ε−λ1 ·pπ εκ∗ ·pπ , (37)

in which |pπ| is the pion momentum in the D1 frame, and the S and D ∈ C parametrize the

s- and d-wave contributions, respectively. This is equivalent to the conventions in Ref. [46],

but with S scaled by an additional factor −3/
√

2 with respect to D to match the conventions

of the EvtGen ‘VVSPWave’ class. (S is normalized by an additional |pπ| factor so that it is di-

mensionless.) The corresponding partial rate ΓD1→D∗π = (|D|2 + 9|S|2/2)|pπ|5/(24πf 2
πm

2
D1

).

The parameters S and D are treated as constant form-factors by the library, and may be set

as options of the ‘PW’ parametrization. This permits reweighting between specific d/s-wave

admixtures. The default is S = 0, D = 1.

The explicit D∗2 → D(∗)π partial-wave amplitudes, in the same notation are

Aλκ
D∗+2 →D∗π

=
D

fπ
iεαβγδε−λατ p

τ
πε
κ
D∗βpπγpD∗δ , (38)

Aλ
D∗+2 →Dπ

=
D

fπ
ε−λµν p

µ
πp

ν
π , (39)

(40)

corresponding to the partial rates ΓD∗2→D∗π = |D|2|pπ|5/(40πf 2
πm

2
D1

) and ΓD∗2→Dπ =

|D|2|pπ|5/(60πf 2
πm

2
D1

), respectively. The parameter D is treated as a constant form-factor

by the library, and may be set as an option of the ‘PW’ parametrization. The default is

D = 1.

G. Resonance Lineshapes

EvtGen includes additional momentum and angular momentum dependent models for

resonance lineshapes, that can be numerically non-negligible for broad resonances such as

the D∗∗. These (somewhat arbitrary) lineshape models typically factorize from the decay

amplitudes themselves, and are generically invariant under reweighting. They are therefore

not presently included automatically the Hammer library: Effects of reweighting on the line-

shape model, if important, can instead be included by the user via setEventBaseWeight. The

latter may be required in two cases:

• EvtGen does not incorporate the lineshape in the case the decay is pure phase space.

Thus caution should be used when reweighting broad resonances from pure phase

generated by EvtGen, because lineshape weights typically included by EvtGen will be

absent.

43

• The EvtGen lineshape models are sensitive to the angular momentum of the resonance.

Thus reweighting that alters an admixture of partial waves (such as is possible with the

PW FF parametrization of the D1 → D∗π decay) may incorporate a different lineshape

than would have been generated directly by EvtGen.

For more information on lineshape options in EvtGen we refer to its documentation di-

rectly [47].

H. τ spinors

I. D(∗,∗∗) polarizations, Λ(∗)
c spins

VI. INSTALLATION

The Hammer package can be installed from the source code. The most recent version is

available at:

Before compiling the code, the folliwing dependency requirements should be met:

• boost ver. ≥ 1.50

• cmake ver. ≥ 3.2

• yaml-cpp ver. ≥ 0.5

• a C++ compiler supporting C++14 (e.g. gcc ver. ≥ 5.1 or clang ver. ≥ 3.4)

• (optional) python3 ver. ≥ 3.5 and the Cython python package to create the Hammer

python package

• (optional) ROOT to enable Hammer ROOT histograms support

• (optional) HepMC ver. ≥ 2.06 to compile and run the examples

• (optional) doxygen to produce the code documentation (together with graphviz and

optionally LaTeX and doxypypy Python package)

such packages are usually readily installed with the standard package managers pro-

vided by the operating system. For example, on Fedora Core using dnf one would need

to install: boost, cmake, yaml-cpp, yaml-cpp-devel, (and optionally) python-devel,

python2-Cython, doxygen, root, HepMC, HepMC-devel. On Ubuntu using apt the pack-

age needed would be: libboost-dev, libyaml-cpp-dev, root-system, libhepmc-dev,

python-pip, and then Cython and doxypypy (with pip install <package>). Similarly

under MacOS using the homebrew package manager one would need to install boost, cmake,

yaml-cpp, root6, cython, doxygen, hepmc (which is provided by the homebrew-hep tap).

44

Alternatively, some smaller dependencies can be installed automatically with Hammer during

the installation process (see below for the list of dependency and the configure syntax).

Once the dependencies are installed one can expand the Hammer sources tarball in a

temporary directory (which we will indicate as <source dir> below), create a temporary

build directory (<build dir>) and then issue

> cd <build_dir>

> cmake -DCMAKE_INSTALL_PREFIX=<install_dir> <other_options> <source_dir>

> make all

> make install

if the directory prefix for the installation path is omitted CMake will automatically use

/usr/local. If the unit tests are enabled (see below) one can run them in the build directory

by running

> ctest -V

this is useful for checking that Hammer has been built properly. The main <other options>

are:

• -DWITH ROOT=[ON,OFF]: enables the Hammer interface with ROOT,

• -DWITH PYTHON=[ON,OFF]: enables the Hammer python bindings,

• -DWITH EXAMPLES=[ON,OFF]: compiles and install Hammer examples and demo pro-

grams (requires HepMC),

• -DBUILD DOCUMENTATION=[ON,OFF]: builds Hammer documentation pages using

Doxygen,

• -DENABLE TESTS=[ON,OFF]: compiles a suite of unit tests for the Hammer library.

• -DMAX CXX STANDARD=[14,17,20]: select the maximum C++ dialect used by the com-

piler. The configuration step determines the dialect by taking the minimum among

the maximum supported by the compiler, the value of this option and the dialect used

in compiling ROOT if WITH ROOT is enabled. The minimum allowed dialect is always

C++14.

where the default values have been underlined. If the examples are enabled, during the

configuration steps a few event files necessary to run the examples programs and too large

to be distributed with the source code will be automatically downloaded. Finally, after

installation the examples will be located in <install dir>/share/Hammer/examples. In

order to facilitate installation on systems where the dependencies are either missing or not

automatically recognized, the following options are available:

45

• -DINSTALL EXTERNAL DEPENDENCIES=[ON,OFF]: installs the missing dependencies

(namely boost, yaml-cpp, HepMC, Cython and/or doxypypy)

• -DFORCE BOOST INSTALL=[ON,OFF]: forces Hammer to use a local boost installation,

irrespective of whether it is already present on the system

• -DFORCE YAMLCPP INSTALL=[ON,OFF]: same as above but for yaml-cpp

• -DFORCE HEPMC INSTALL=[ON,OFF]: same as above but for HepMC

[1] P. Krawczyk and S. Pokorski, Phys. Rev. Lett. 60, 182 (1988).

[2] P. Heiliger and L. M. Sehgal, Phys. Lett. B229, 409 (1989).

[3] J. Kalinowski, Phys. Lett. B245, 201 (1990).

[4] B. Grzadkowski and W.-S. Hou, Phys. Lett. B272, 383 (1991).

[5] Y. Grossman and Z. Ligeti, Phys. Lett. B332, 373 (1994), arXiv:hep-ph/9403376 [hep-ph].

[6] M. Tanaka, Z. Phys. C67, 321 (1995), arXiv:hep-ph/9411405 [hep-ph].

[7] W. D. Goldberger, (1999), arXiv:hep-ph/9902311 [hep-ph].

[8] D. Buskulic et al. (ALEPH Collaboration), Phys. Lett. B298, 479 (1993).

[9] Y. S. Amhis et al. (HFLAV), (2019), arXiv:1909.12524 [hep-ex].

[10] J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D88, 072012 (2013), arXiv:1303.0571

[hep-ex].

[11] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115, 111803 (2015), [Addendum: Phys.

Rev. Lett. 115, no.15, 159901 (2015)], arXiv:1506.08614 [hep-ex].

[12] M. Huschle et al. (Belle Collaboration), Phys. Rev. D92, 072014 (2015), arXiv:1507.03233

[hep-ex].

[13] B. Grinstein and A. Kobach, Phys. Lett. B771, 359 (2017), arXiv:1703.08170 [hep-ph].

[14] C. G. Boyd, B. Grinstein, and R. F. Lebed, Nucl. Phys. B461, 493 (1996), arXiv:hep-

ph/9508211 [hep-ph].

[15] C. G. Boyd, B. Grinstein, and R. F. Lebed, Phys. Rev. D56, 6895 (1997), arXiv:hep-

ph/9705252 [hep-ph].

[16] D. Scora and N. Isgur, Phys. Rev. D52, 2783 (1995), arXiv:hep-ph/9503486 [hep-ph].

[17] N. Isgur, D. Scora, B. Grinstein, and M. B. Wise, Phys. Rev. D39, 799 (1989).

[18] I. Caprini, L. Lellouch, and M. Neubert, Nucl. Phys. B530, 153 (1998), arXiv:hep-ph/9712417

[hep-ph].

[19] F. U. Bernlochner, Z. Ligeti, M. Papucci, and D. J. Robinson, Phys. Rev. D95, 115008

(2017), arXiv:1703.05330 [hep-ph].

[20] F. U. Bernlochner, Z. Ligeti, M. Papucci, M. T. Prim, D. J. Robinson, and C. Xiong, (2022),

arXiv:2206.11281 [hep-ph].

46

http://dx.doi.org/10.1103/PhysRevLett.60.182
http://dx.doi.org/10.1016/0370-2693(89)90429-2
http://dx.doi.org/10.1016/0370-2693(90)90134-R
http://dx.doi.org/10.1016/0370-2693(91)91847-O
http://dx.doi.org/10.1016/0370-2693(94)91267-X
http://arxiv.org/abs/hep-ph/9403376
http://dx.doi.org/10.1007/BF01571294
http://arxiv.org/abs/hep-ph/9411405
http://arxiv.org/abs/hep-ph/9902311
http://dx.doi.org/10.1016/0370-2693(93)91853-F
http://arxiv.org/abs/1909.12524
http://dx.doi.org/10.1103/PhysRevD.88.072012
http://arxiv.org/abs/1303.0571
http://arxiv.org/abs/1303.0571
http://dx.doi.org/10.1103/PhysRevLett.115.159901, 10.1103/PhysRevLett.115.111803
http://arxiv.org/abs/1506.08614
http://dx.doi.org/10.1103/PhysRevD.92.072014
http://arxiv.org/abs/1507.03233
http://arxiv.org/abs/1507.03233
http://dx.doi.org/10.1016/j.physletb.2017.05.078
http://arxiv.org/abs/1703.08170
http://dx.doi.org/10.1016/0550-3213(95)00653-2
http://arxiv.org/abs/hep-ph/9508211
http://arxiv.org/abs/hep-ph/9508211
http://dx.doi.org/10.1103/PhysRevD.56.6895
http://arxiv.org/abs/hep-ph/9705252
http://arxiv.org/abs/hep-ph/9705252
http://dx.doi.org/10.1103/PhysRevD.52.2783
http://arxiv.org/abs/hep-ph/9503486
http://dx.doi.org/10.1103/PhysRevD.39.799
http://dx.doi.org/10.1016/S0550-3213(98)00350-2
http://arxiv.org/abs/hep-ph/9712417
http://arxiv.org/abs/hep-ph/9712417
http://dx.doi.org/10.1103/PhysRevD.95.115008
http://dx.doi.org/10.1103/PhysRevD.95.115008
http://arxiv.org/abs/1703.05330
http://arxiv.org/abs/2206.11281

[21] A. K. Leibovich, Z. Ligeti, I. W. Stewart, and M. B. Wise, Phys. Rev. D57, 308 (1998),

arXiv:hep-ph/9705467 [hep-ph].

[22] A. K. Leibovich, Z. Ligeti, I. W. Stewart, and M. B. Wise, Phys. Rev. Lett. 78, 3995 (1997),

arXiv:hep-ph/9703213 [hep-ph].

[23] F. U. Bernlochner, Z. Ligeti, and D. J. Robinson, (2017), arXiv:1711.03110 [hep-ph].

[24] F. U. Bernlochner and Z. Ligeti, Phys. Rev. D95, 014022 (2017), arXiv:1606.09300 [hep-ph].

[25] A. Bharucha, D. M. Straub, and R. Zwicky, JHEP 08, 098 (2016), arXiv:1503.05534 [hep-ph].

[26] M. Pervin, W. Roberts, and S. Capstick, Phys. Rev. C72, 035201 (2005), arXiv:nucl-

th/0503030 [nucl-th].

[27] F. U. Bernlochner, Z. Ligeti, D. J. Robinson, and W. L. Sutcliffe, Phys. Rev. D99, 055008

(2019), arXiv:1812.07593 [hep-ph].

[28] F. U. Bernlochner, Z. Ligeti, D. J. Robinson, and W. L. Sutcliffe, Phys. Rev. Lett. 121,

202001 (2018), arXiv:1808.09464 [hep-ph].

[29] F. U. Bernlochner, M. Papucci, and D. J. Robinson, (2023), arXiv:2312.07758 [hep-ph].

[30] A. K. Leibovich and I. W. Stewart, Phys. Rev. D57, 5620 (1998), arXiv:hep-ph/9711257

[hep-ph].

[31] M. Papucci and D. J. Robinson, (2021), arXiv:2105.09330 [hep-ph].

[32] V. Kiselev, (2002), arXiv:hep-ph/0211021.

[33] D. Ebert, R. Faustov, and V. Galkin, Phys. Rev. D 68, 094020 (2003), arXiv:hep-ph/0306306.

[34] T. D. Cohen, H. Lamm, and R. F. Lebed, Phys. Rev. D 100, 094503 (2019), arXiv:1909.10691

[hep-ph].

[35] J. A. Bailey et al. (Fermilab Lattice, MILC), Phys. Rev. D 92, 014024 (2015), arXiv:1503.07839

[hep-lat].

[36] N. Gubernari, A. Kokulu, and D. van Dyk, JHEP 01, 150 (2019), arXiv:1811.00983 [hep-ph].

[37] Y. Aoki et al. (Flavour Lattice Averaging Group (FLAG)), Eur. Phys. J. C 82, 869 (2022),

arXiv:2111.09849 [hep-lat].

[38] J. H. Kuhn and E. Mirkes, Z. Phys. C56, 661 (1992), [Erratum: Z. Phys.C67,364(1995)].

[39] O. Shekhovtsova, T. Przedzinski, P. Roig, and Z. Was, Phys. Rev. D86, 113008 (2012),

arXiv:1203.3955 [hep-ph].

[40] I. M. Nugent, T. Przedzinski, P. Roig, O. Shekhovtsova, and Z. Was, Phys. Rev. D88, 093012

(2013), arXiv:1310.1053 [hep-ph].

[41] E. Barberio, B. van Eijk, and Z. Wa̧s, Computer Physics Communications 66, 115 (1991).

[42] Z. Ligeti, M. Papucci, and D. J. Robinson, JHEP 01, 083 (2017), arXiv:1610.02045 [hep-ph].

[43] A. F. Falk and M. Neubert, Phys. Rev. D47, 2982 (1993), arXiv:hep-ph/9209269 [hep-ph].

[44] R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio, and G. Nardulli, Phys.

Rept. 281, 145 (1997), arXiv:hep-ph/9605342.

[45] U. Kilian, J. G. Korner, and D. Pirjol, Phys. Lett. B 288, 360 (1992).

[46] M. Lu, M. B. Wise, and N. Isgur, Phys. Rev. D 45, 1553 (1992).

47

http://dx.doi.org/10.1103/PhysRevD.57.308
http://arxiv.org/abs/hep-ph/9705467
http://dx.doi.org/10.1103/PhysRevLett.78.3995
http://arxiv.org/abs/hep-ph/9703213
http://arxiv.org/abs/1711.03110
http://dx.doi.org/10.1103/PhysRevD.95.014022
http://arxiv.org/abs/1606.09300
http://dx.doi.org/10.1007/JHEP08(2016)098
http://arxiv.org/abs/1503.05534
http://dx.doi.org/10.1103/PhysRevC.72.035201
http://arxiv.org/abs/nucl-th/0503030
http://arxiv.org/abs/nucl-th/0503030
http://dx.doi.org/10.1103/PhysRevD.99.055008
http://dx.doi.org/10.1103/PhysRevD.99.055008
http://arxiv.org/abs/1812.07593
http://dx.doi.org/10.1103/PhysRevLett.121.202001
http://dx.doi.org/10.1103/PhysRevLett.121.202001
http://arxiv.org/abs/1808.09464
http://arxiv.org/abs/2312.07758
http://dx.doi.org/10.1103/PhysRevD.57.5620
http://arxiv.org/abs/hep-ph/9711257
http://arxiv.org/abs/hep-ph/9711257
http://arxiv.org/abs/2105.09330
http://arxiv.org/abs/hep-ph/0211021
http://dx.doi.org/10.1103/PhysRevD.68.094020
http://arxiv.org/abs/hep-ph/0306306
http://dx.doi.org/10.1103/PhysRevD.100.094503
http://arxiv.org/abs/1909.10691
http://arxiv.org/abs/1909.10691
http://dx.doi.org/10.1103/PhysRevD.92.014024
http://arxiv.org/abs/1503.07839
http://arxiv.org/abs/1503.07839
http://dx.doi.org/10.1007/JHEP01(2019)150
http://arxiv.org/abs/1811.00983
http://dx.doi.org/10.1140/epjc/s10052-022-10536-1
http://arxiv.org/abs/2111.09849
http://dx.doi.org/10.1007/BF01474741, 10.1007/BF01571299
http://dx.doi.org/10.1103/PhysRevD.86.113008
http://arxiv.org/abs/1203.3955
http://dx.doi.org/ 10.1103/PhysRevD.88.093012
http://dx.doi.org/ 10.1103/PhysRevD.88.093012
http://arxiv.org/abs/1310.1053
http://dx.doi.org/https://doi.org/10.1016/0010-4655(91)90012-A
http://dx.doi.org/10.1007/JHEP01(2017)083
http://arxiv.org/abs/1610.02045
http://dx.doi.org/10.1103/PhysRevD.47.2982
http://arxiv.org/abs/hep-ph/9209269
http://dx.doi.org/10.1016/S0370-1573(96)00027-0
http://dx.doi.org/10.1016/S0370-1573(96)00027-0
http://arxiv.org/abs/hep-ph/9605342
http://dx.doi.org/10.1016/0370-2693(92)91115-P
http://dx.doi.org/10.1103/PhysRevD.45.1553

[47] A. Ryd, D. Lange, N. Kuznetsova, S. Versille, M. Rotondo, D. P. Kirkby, F. K. Wuerthwein,

and A. Ishikawa, (2005).

48

	An Introduction to Hammer: Helicity Amplitude Module for Matrix Element Reweighting ver. 1.4.1
	Abstract
	Contents
	Introduction
	Design Overview
	Reweighting
	New Physics generalization
	Hadronic generalization
	Rates
	Primary code functionalities
	Code flow

	The Hammer Forge
	From the process tree to an amplitude tensor
	Available amplitudes and form factor parametrizations
	Including and excluding processes
	Form factor schemes
	Form factor settings
	Form factor duplication
	Units
	Processing events
	Retrieving event weights
	Setting Wilson Coefficients
	Setting FF eigenvectors
	Specialization of Wilson Coefficients
	Histograms
	Adding
	Filling
	Compression
	Retrieval
	Specialization
	Uncertainties
	Projection

	Pure phase space vertices
	PHOTOS
	Rates
	Multithreading

	The !Hammer! Buffer
	Saving
	Headers, Events and Rates
	Histograms
	ROOT

	(Re)loading
	Parallelization and merging

	Conventions
	Vcb
	NP operator basis
	Lorentz signs
	Form Factors and Maps
	BD
	BD*
	B D**
	b c
	B ,
	b c *(2595) and c *(2625)

	Form Factor uncertainties
	D** strong decays
	Resonance Lineshapes
	 spinors
	D(*,**) polarizations, c(*) spins

	Installation
	References

