![]() |
Hammer
1.0.0
Helicity Amplitude Module for Matrix Element Reweighting
|
#include "Hammer/Math/Tensor.hh"#include "Hammer/Exceptions.hh"#include "Hammer/Tools/HammerSerial.hh"#include "Hammer/Math/MultiDim/IContainer.hh"#include "Hammer/Math/MultiDim/ScalarContainer.hh"#include "Hammer/Math/MultiDim/OuterContainer.hh"#include "Hammer/Math/MultiDim/Operations.hh"#include <iostream>
Include dependency graph for Tensor.cc:Go to the source code of this file.
Namespaces | |
| Hammer | |
| The Hammer namespace contains the library code. | |
Functions | |
| Tensor | Hammer::dot (const Tensor &first, const Tensor &second, const set< IndexLabel > &indices) |
| Tensor | Hammer::spinSum (const Tensor &first) |
| trace a tensor More... | |
| Tensor | Hammer::spinAverage (const Tensor &first) |
| trace a tensor over the traceable spin indices and divide by the product of the dimensions of the traced indices (equal to \( 2s_i + 1 \)) More... | |
| Tensor | Hammer::operator* (const Tensor &first, double val) |
| left multiplies a tensor by a real constant More... | |
| Tensor | Hammer::operator* (double val, const Tensor &first) |
| right multiplies a tensor by a real constant More... | |
| Tensor | Hammer::operator* (std::complex< double > val, const Tensor &first) |
| right multiplies a tensor by a complex constant More... | |
| Tensor | Hammer::operator* (const Tensor &first, std::complex< double > val) |
| left multiplies a tensor by a complex constant More... | |
| Tensor | Hammer::operator+ (const Tensor &first, const Tensor &second) |
| adds two tensors of the same rank and same dimensions More... | |
| Tensor | Hammer::outerSquare (const Tensor &first) |
| creates a tensor with twice the rank by multiplying the tensor with it's hermitean conjugate More... | |
| Tensor | Hammer::elementMultiply (const Tensor &first, const Tensor &second) |
| multiplies two tensors of the same rank and same dimensions element by element More... | |
| Tensor | Hammer::elementDivide (const Tensor &first, const Tensor &second) |
| divides two tensors of the same rank and same dimensions element by element More... | |